

Für’n Käpt’n.

Volldampf voraus!
24. Chaos Communication Congress

Tagungsband

24. Chaos Communication Congress

Volldampf voraus! 3

24C3 Tagungsband Volldampf voraus!
27. - 30. Dezember 2007, Kongreßhalle am Alexanderplatz, Berlin.

24. Chaos Communication Congress Eine Veranstaltung des Chaos Computer Clubs.
http://events.ccc.de/congress/2007/

Umschlag: evelyn & hukl (Cover) sowie Marten (Rücken)
Satz: wetterfrosch
Lizenz: c Creative Commons 2007 b Namensnennung n Keine kommerzielle Nutzung d Keine Bearbeitung 3.0 Unported
Schrift: Yanone Kaff eesatz von Jan Gerner, lizensiert unter c b Namensnennung 2.0 Deutschland.

Herausgeber: Matthias Mehldau
Verlag: Art d’Ameublement Marktstraße 18 in 33602 Bielefeld
Vertrieb: FoeBuD e.V. Unterstützungsbedarf Marktstraße 18 in 33602 Bielefeld http://shop.foebud.org/
ISBN-13: 978-3-934636-06-4

Programmierung der Vorträge
unter dem sympathisch herrschendem Schirm der Wau-Holland-Stiftung.

1. Aufl age, 400 Stück.
Alle bis zum 17. Dezember 2007 eingereichten Papers. Stand des Fahrplans vom 1. Dezember 2007.
Herstellung: copy print Kopie & Druck GmbH Berlin
2. Aufl age, on Demand geplant
Herstellung: Books on Demand GmbH Norderstedt bod.de-ID: 0005147212

Lizenzbestimmung in menschenlesbarer Form
Sie dürfen zu den folgenden Bedingungen dieses Werk verviel�ältigen, verbreiten und öff entlich zugänglich machen:

b Namensnennung. Sie müssen den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen
 (wodurch aber nicht der Eindruck entstehen darf, Sie oder die Nutzung des Werkes durch Sie würden entlohnt).
n Keine kommerzielle Nutzung. Dieses Werk darf nicht �ür kommerzielle Zwecke verwendet werden.
d Keine Bearbeitung. Dieses Werk darf nicht bearbeitet oder in anderer Weise verändert werden.

c http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode C

Bibliografi sche Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation
in der Deutschen Nationalbibliografi e; detaillierte bibliografi sche
Daten sind im Internet über http//dnb.d-nb.de/ abrufbar.

Papers
Absurde Mathematik ... 9

AES: side-channel attacks for the masses ... 15

Analysis of Sputnik Data from 23C3 ... 19
Attempts to regenerate lost sequences

AnonAccess ... 53
Ein anonymes Zugangskontrollsystem

Dining Cryptographers, The Protocol ... 67
Even slower than Tor and JAP together!

Grundlagen der sicheren Programmierung ... 73
Typische Sicherheitslücken

Hacking ideologies, part 2: Open Source, a capitalist movement ... 79
Free Software, Free Drugs and an ethics of death

Inside the Mac OS X Kernel ... 85
Debunking Mac OS Myths

Introduction in MEMS ... 91

Just in Time compilers - breaking a VM ... 97
Practical VM exploiting based on CACAO

Konzeptionelle Ein�ührung in Erlang ... 113

Linguistic Hacking ... 121
How to know what a text in an unknown language is about?

Modelling Infectious Diseases in Virtual Realities ... 129
The “corrupted blood” plague of WoW from an epidemiological perspective

Overtaking Proprietary Software Without Writing Code ... 135
“a few rough insights on sharpening free software”

Simulating the Universe on Supercomputers ... 139
The evolution of cosmic structure

To be or not I2P ... 145
An introduction into anonymous communication with I2P

VX ... 151
The Virus Underground

Wahlchaos ... 165
Paradoxien des deutschen Wahlsystems

Veranstaltungen
Tag 1 ... 174
Tag 2 ... 178
Tag 3 ... 181
Tag 4 ... 185

Inhaltsverzeichnis

Volldampf voraus!
24. Chaos Communication Congress

Papers

27. - 30. Dezember 2007, Berlin

8 24C3

Absurde Mathematik
Paradoxa wider die mathematische Intuition

lecture

Science

Tag 2 12:45

Saal 2

de

Anoushirvan Dehghani

Ein kleiner Streifzug durch die Abgründe der Mathematik. Eigentlich ist der Mensch mit
einer recht gut funktionierenden Intuition ausgerüstet. Dennoch gibt es Paradoxa, welche
mathematisch vollkommen korrekt und beweisbar sind, jedoch unserer Intuition
widersprechen. Der Vortrag bietet einen Streifzug durch einige dieser Paradoxa, die kurz
und anschaulich erklärt werden.

Nicht alles, was mathematisch beweisbar ist, ist auch intuitiv und verständlich zu erfassen. Wie
kann beispielsweise ein einfacher Körper wie Gabriels Horn ein begrenztes Volumen, aber eine
unendlich große Oberfläche haben? Oder warum ist es bei einem Triell, einem Duell mit drei
Schützen, als schlechter Schütze für das eigene Überleben von Vorteil, wenn man als letztes
schießen darf? Woher kommt das Braess'sche Paradoxon, bei dem die Verbesserung eines
Verkehrsstreckenabschnittes zum Zusammenbruch des gesamten Verkehrsflusses führen kann?
Wie kann bei Penney-Ante ein unfaires Spiel entstehen, wo doch eine absolut faire Münze
geworfen wird?Und wie lief das genau mit dem bekannten Ziegenproblem, soll man sich nach
Öffnen der ersten Tür mit der Niete zwischen den anderen beiden Türen umentscheiden?

24. Chaos Communication Congress

Volldampf voraus! 9

Absurde Mathematik

Anoushirvan Dehghani

4. Dezember 2007

Zusammenfassung. Ein kleiner Streifzug durch die etwas
absurderen und paradoxen Seiten der Mathematik. Es wer-
den Beweise gezeigt, die der menschlichen Intuition oder
einfach nur sich selbst widersprechen. Wo es möglich ist,
sollen die Paradoxa auch aufgelöst werden.

1 Gabriels Horn

Ein seit der Neuzeit bekanntes mathematisches Paradoxon
ist Gabriels Horn. Nach seinem Entdecker Evangelista Tor-
ricelli 1 wird es auch Toricellis Trompete genannt.

Es handelt sich dabei um der in Abb. 1 gezeigten Rotations-
körper, der durch eine Drehung des Graphen von y = 1

x für
alle x ≥ 1 um die x-Achse erzeugt wird.

1

0

1

1
2

3
4

5
6

7
8

9
10

1

0

1

Abbildung 1: Anfangsverlauf von Gabriels Horn

Dieser recht simpel aussehende Körper hat eine seltsame
Eigenschaft. Die Berechnung seines Volumens ergibt einen
endlichen Wert:

V =

∞∫
1

π

x2
dx = π

[
− 1

x

]∞

1

= π[0 − (−1)] = π (1)

Anders hingegen sieht es aus, wenn die Oberfläche be-
stimmt werden soll:

A =

∞∫
1

2πy ·
√

1 + y′2 dx = 2π

∞∫
1

√
1+ 1

x4

x
dx

≥ 2π

∞∫
1

1
x

dx = 2π [ln(x)]∞1 = ∞ (2)

1* 15. Oktober 1608 in Faenza, IT; † 25. Oktober 1647 in Florenz, IT.

Dieser Körper hat also eine unendlich große und dennoch
glatte Oberfläche2, jedoch ein nur endlich großes Volumen!
Anschaulich gesagt: Entspricht eine Maßeinheit 10 cm, so
reichen etwas mehr als drei Liter Farbe aus, um das Horn
komplett zu füllen. Jedoch würde sich niemals genug Far-
be finden, um die ∞ qm große Oberfläche anzustreichen -
und dies, obwohl das Horn doch bereits komplett mit Farbe
gefüllt ist!

Die Erklärung dieses Paradoxons liegt an den unterschied-
lichen Dimensionen der Oberfläche und des Volumens. Die
Integration eines Rotationskörpers kann als stückweise Ad-
dition kurzer zweidimensionaler Ring- bzw. dreidimensio-
naler Scheibchensegmente angenähert werden. Deren Radi-
us entspricht dabei jeweils dem momentanen Funktionswert
von y = 1

x .

Werden diese Segmente infinitesimal kurz gehalten, so er-
geben sich eindimensionale Ringstreifen bzw. zweidimen-
sionale Kreise. Wächst nun x über alle Grenzen, so gilt:

2π

√
1+ 1

x4

x
� π

π

x2
für x → ∞ (3)

Das wachsende x geht also nur reziprok linear in die Größe
der Ringstreifen ein, während es für die Fläche der Krei-
se zu einem quadratischen Absinken führt. Dies führt ei-
nerseits zu dem existierenden Grenzwert π, andererseits zu
dem unbegrenzten Wachstum der Oberfläche.

Die praktische Durchführung eines „Befüll-Experimentes“
scheitert daran, dass die Herstellung eines solchen, unend-
lich langen Objektes nicht so recht gelingen mag. Unabhän-
gig davon wäre ab einer bestimmten Länge der Horndurch-
messer so klein, dass nicht mal mehr ein einziges Molekül
oder Atom der verwendeten Füllsubstanz hineinpassen wür-
de.

Merke: Zweidimensionale Oberflächen im dreidimensiona-
len Raum sind nicht ohne weiteres mit dreidimensionalen
Volumina zu vergleichen!

2„glatt“ bedeutet hier, dass es nicht um eine fraktale Oberfläche oder
ähnliche Taschenspielertricks geht.

27. - 30. Dezember 2007, Berlin

10 24C3

2 Efrons intransitive Würfel

Der gesunde Menschenverstand sagt: Wenn der Porsche
meist schneller ist als der Audi, und der Ferrari meist
schneller als der Porsche, so wird der Ferrari in der Re-
gel auch den Audi schlagen. Der Mathematiker spricht hier
von einem transitiven Vorteil. Dass dies bei einem Glückss-
piel mit fairen Würfeln nicht gelten muß, erscheint absurd -
und dennoch ist es so!

Die erste Person, die einen Satz solch intransitiver Wür-
fel vorgestellt hat, war Bradley Efron3. Die Belegung ist in
Abb. 2 dargestellt. Fair bedeutet, dass jede Seite eines Wür-
fels die gleiche Auftretenswahrscheinlichkeit von p = 1

6 be-
sitzt. Seltsam dabei: Spieler 1 darf sich einen beliebigen die-

Abbildung 2: Efrons Würfel

ser vier Würfel aussuchen. Spieler 2 kann nun immer einen
der verbleibenden Würfen so auswählen, dass sein Würfel
den von Spieler 1 im statistischen Mittel schlägt. Mathema-
tisch formuliert gilt:

P (A > B) = P (B > C) = P (C > D)

= P (D > A) =
2
3

(4)

Wird der Wettstreit beispielsweise über zehn Runden ge-
spielt, so gewinnt A über B mit an Sicherheit grenzender
Wahrscheinlichkeit. Genauso B über C. Und C über D. Und
D über A - womit das Bild eines Treppenhauses im Stile
von Escher4 vor Augen rückt.

Wie kommt dieses Phänomen zustande? Die Betrachtung
der Erwartungswerte, also der statistischen Mittelwerte,
bringt keinen Hinweis: E[A] = 16

6 , E[B] = 3, E[C] = 20
6 ,

E[C] = 3. Aufschlussreicher ist dagegen ein Blick auf die
bedingten Wahrscheinlichkeiten. Bei diesem direkten Ver-
gleich zeigt sich, dass die Abstufungen der Würfel genau
so gewählt sind, dass sie jeweils ihren „Vorgänger“ gerade
eben mit p = 2

3 schlagen - unter minimalem Einsatz der
Mittel, also der Augen auf den Seiten. Anders formuliert:
Jeder Würfel ist genau so „eingestimmt“, dass er im Ver-
gleich zu seinem unterlegenen Widerpart in 24 von 36 Fäl-
len überlegen ist. Die dazu verwendeten Ziffern sind dabei
so gewählt, dass sich der genannte „Kreislauf“ bilden kann
- und damit zu jedem Würfel ein überlegener existiert.

Mittlerweile gibt es eine Reihe weitere Sätze intransitiver
Würfel. Der Schönheitsfehler von Würfel B, dessen Wurf

3* Mai 1938 in Minnesota, USA.
4Nach Maurits Cornelis Escher, * 17. Juni 1898 in Leeuwarden; NL; †

27. März 1972 in Hilversum, NL.

rasch langweilig wird, konnte beseitigt werden. Auch mit
nur drei Würfeln läßt sich ein intransiver Satz erstellen. Als
Fazit bleibt: Die Eigenschaft, der wahrscheinliche Gewin-
ner eines Matches zu sein, muß nicht transitiv sein! Was bei
„Stein, Schere, Papier“ willkürlich festgelegt wurde, kann
auch mit solidem Regelwerk begründet werden.

3 Penney-Ante

Wo wir gerade bei intransitiven Paradoxa sind: Wie wäre es
mit einem einfachen Münzwurf? Die Wahrscheinlichkeit p
für Zahl, Z, sei dabei genauso hoch wie q, die Wahrschein-
lichkeit für Kopf K: p = q = 1

2 . Es soll sich dabei um glei-
chermaßen faire wie gedächtnislose Münzen handeln. Der
Ausgang eines Wurfes ist also nicht von den vorhergehen-
den Würfen beeinflußt.

Die Regeln des Spieles lauten: Spieler 1 sucht sich eine be-
liebige Reihe von Münzwürfen der Mindestlänge drei aus,
beispielsweise ZKK oder KKZK. Spieler 2 wählt nun eben-
fals eine Wurfreihe aus. Sodann wird die Münze so lange
geworfen, bis die Reihe eines der beiden Spieler auftaucht.
Wenn Spieler 2 alles richtig anstellt, so wird er immer eine
Kombination finden, deren Gewinnwahrscheinlichkeit hö-
her ist als die von Spieler 1. Für die genannten Beispiele
wären das ZZK und ZKKZ. Wie kann und darf das sein?
Die Wahrscheinlichkeiten sind doch pqq = ppq = 1

8 bzw.
qqpq = pqqp = 1

16 . Oder etwa nicht?

Die Taktik, mit der Walter Penney [6] den wahrscheinlichen
Ausgang dieses Spieles zu seinen Gunsten beeinflußt, lautet
wie folgt: hat Spieler 1 die folgende Münzreihe der Länge
n gewählt

m1m2m3 . . . mn, (5)

so setzt Spieler 2 auf die Reihe:

m2m1m2 . . . mn−1. (6)

Entscheidend ist hierbei m2, welches das Gegenteil von m2

darstellt: K anstatt Z und Z anstatt K. Spieler 2 wählt also für
seine letzten n−1 Plätze genau die Werte, die Spieler 1 auf
den ersten n−1 Plätzen hat. Der erste Wert von Spieler 2 ist
die Negation des zweiten Wertes von Spieler 1: K anstatt Z
bzw. Z anstatt K, wie auch in den oben genannten Beispielen
geschehen.

Zum Verständnis dieses Sachverhaltes ist ein Zustandsdia-
gramm wie in Abb. 3 hilfreich. Spieler 1 setzt hier auf ZKK,
Spieler 2 auf ZZK. Die Übergänge entsprechen jeweils dem
Ausgang eines Münzwurfes, K oder Z. Wir beginnen im lin-
ken Zustand „Start“. Sobald das erste mal ein Z landet, ent-
spricht das der Initialisierung beider Reihen (die jeweils mit
Z beginnen), und der Zustand A wird erreicht. Je nach dem
weiteren Verlauf der Münzwürfe wird früher oder später das
Gewinnfeld für Spieler 1 oder Spieler 2 erreicht.

2

24. Chaos Communication Congress

Volldampf voraus! 11

Abbildung 3: Zustandsdiagramm für Zahl-Kopf-Kopf (#1)
gegen Zahl-Zahl-Kopf (#2)

Das Zustandsdiagramm erlaubt eine interessante Beobach-
tung. Mit Erreichen von Zustand B ist das Spiel so gut wie
gelaufen, und Spieler 2 der designierte Gewinner. Es gibt
nämlich keinen Weg, um von hier aus noch zum Zustand
#1 zu gelangen. Aus Zustand C heraus kann hingegen sehr
wohl ein Pfad zurück in Richtung Zustand #2 gefunden
werden. Das gesamte Spiel wird also in Zustand A schon
entschieden! Spieler 2 benötigt hier nur ein einziges Auf-
treten von Z, während Spieler 1 auf ein nur halb so wahr-
scheinliches KK hoffen muß.

Sicher ist es müßig, für jede einzelne Folge von Würfen ein
derartiges Zustandsdiagramm zu erstellen. Es läßt sich her-
leiten, dass die Gewinnwahrscheinlichkeit einer bestimm-
ten Folge A im Vergleich zu einer anderen Folge B wie
folgt berechnen läßt:

P (A)
P (B)

=
B : B − B : A

A : A − A : B
. (7)

Dabei ist V : W definiert als

V : W =
min l,m∑

k=1

2k−1∇(Vl−k−1:l == W1:k). (8)

Der ∇·-Operator liefert hier eine eins zurück, falls sein
Argument wahr ist, ansonsten eine null. ∇(Vl−k−1:l ==
W1:k) überprüft also, ob die letzten k Symbole von V den
letzten k Symbolen von W entsprechen.

Mittlerweile ist dieses Phänomen auch für größere Alpha-
bete, d.h. mehr als nur Kopf und Zahl, bewiesen werden.
Ausführlichere Informationen hierzu finden sich in [3], als
rasche Einführung leistet [1] gute Dienste.

Als Fazit bleibt zu sagen, dass ein auf den ersten Blick fai-
res Spiel wie Penney-Ante sich bei näherer Betrachtung als
ganz und gar nicht fair entpuppt.

4 Das Ziegenproblem

Eine in ihren Grundzügen seit dem späten 19. Jhdt. durch
Joseph Bertrand5 bekannt gewordene mathematische Pro-
blemstellung ist das Ziegenproblem. Ein größeres Publi-
kuminteresse erlangte es 1990, nachdem Marilyn vos Sa-
vant in ihrer Kolumne im amerikanischen Parade-Magazin
das Thema aufgriff. Auf diesen Artikel hin erhielt sie tau-
sende von Leserbriefen, die ihre mathematischen Fähig-
keiten anzweifelten - zu Unrecht, wie sie später belegen
konnte. Immerhin hat gut die Hälfte der Leserbriefschrei-
ber den Anstand gehabt, sich einsichtig zu zeigen und
ein Entschuldigungsschreiben aufzusetzen. Teile aus diesen
Schriftwechseln sind auf ihrer Webseite nachzulesen unter:
http://www.marilynvossavant.com/articles/gameshow.html.

Worum es bei dem Ziegenproblem geht: Ein Kandidat wird
in einem Quiz vor die Wahl zwischen den drei Türen A,
B unc C gestellt. Eine der Türen führt zum Hauptgewinn,
hinter den anderen beiden Türen verbirgt sich eine Ziege,
mithin also eine Niete. Der Kandidat darf sich für eine der
drei Türen entscheiden. Diese Tür bleibt jedoch vorerst ver-
schlossen. Stattdessen wird eine der beiden anderen Türen
vom Quizleiter geöffnet und eine der Nieten gezeigt. Nun
darf der Kandidat entscheiden, ob er bei seiner Wahl bleibt,
oder die Tür wechseln möchte.

Intuitiv antworten die meisten Leute, dass es doch egal sei,
ob man wechselt oder nicht. Schließlich ist es doch jetzt ei-
ne 50:50 Chance, ob man vorher die Tür mit der Ziege oder
dem Hauptgewinn erwischt hat. Ob Wechsel oder nicht, was
kann das jetzt für einen Unterschied machen?

Es macht einen Unterschied - und zwar verdoppelt sich die
Gewinnchance nach einem Wechsel! Wie kommt es dazu?
Angenommen, der Kandidat hat anfangs auf die richtige
Tür A gesetzt. Die Wahrscheinlichkeit hierfür liegt bei 1

3 .
Nun entfernt der Moderator eine der beiden Nieten. Ein
Kandidat, der die Wechsel-Taktik spielt, wird jetzt zur ver-
bleibenden Niete wechseln, und damit leer ausgehen. Der
wechselunwillige Kandidat gewinnt hier.

Nun nehmen wir an, der Kandidat hat zu Anfang eine der
beiden Nieten-Türen gewählt. Das wird in 2

3 aller Fälle
eintreffen. Die verbleibende Nieten-Tür wird anschließend
vom Moderator aus dem Spiel genommen (den Gewinn darf
der Moderator ja nicht entfernen). Mit der Wechsel-Taktik
landet der Kandidat nun bei der Tür mit dem Hauptgewinn,
während der wechselunwillige Kandidat auf seiner Ziege
sitzen bleibt. In Abb. 4 ist diese Situation dargestellt.

Es zeigt sich also, dass der Wechsel-Kandidat eine doppelt
so hohe Gewinnwahrscheinlichkeit erreicht! Man kann die
Begründung auch anders angehen: Es ist wahrscheinlicher,
anfangs auf eine Ziegen-Tür anstatt auf den Gewinn zu tip-
pen. Jedoch muß der Moderator danach die verbleibende

5* 11. März 1822 in Paris, FR; † 5. April 1900 in Paris, FR

3

27. - 30. Dezember 2007, Berlin

12 24C3

Abbildung 4: Entscheidungsbaum für das Ziegenproblem

Ziegen-Tür entfernen, so dass hinter der noch im Spiel be-
findlichen und in der ersten Runde ungetippten Tür der Ge-
winn verbleibt.

5 Das Triell

Eine etwas paradoxe Situation kann bei einem Triell entste-
hen. Die erste bekannte Erwähnung dieses Phänomens fand
1938 in [7] statt, größere Bekanntheit erlangte es u.a. mit
[2] 1959 sowie unlängst durch eine Erwähnung in [8].

Die Regeln eines Triells sind schnell erklärt: Drei Schützen,
jeder mit einer gewissen Trefferwahrscheinlichkeit, schie-
ßen nacheinander so lange aufeinander, bis nur noch einer
lebt. Aus Gründen der Fairness darf der schlechteste Schüt-
ze anfangen, als zweites schießt der zweitschlechteste, und
als letztes der beste, wenn er dann noch lebt. Nennen wir
unsere Schützen Anton, Bernd und Claas. Die Trefferwahr-
scheinlichkeit für Claas liegt bei pC = 1

3 , Bernd trifft in
zwei von drei Fällen (pB = 2

3), und Anton ist der perfekte
Schütze: pA = 1. Wie soll man sich nun verhalten, wenn
man dummerweise die Rolle des Claas einnehmen darf?

Intuitiv mag man versucht sein, Anton ins Visier zu neh-
men. Schließlich stellt er ja irgendwie die größte Gefahr
dar. Oder doch auf Bernd anlegen? Immerhin ist er direkt
der nächste nach Claas.

Sehen wir uns die Optionen etwas genauer an. Wenn wir mit
Erfolg auf Bernd schießen, dann hat Anton nur noch uns als
Ziel. Bei seiner einhundertprozentigen Trefferwahrschein-
lichkeit keine sehr gute Idee. Entscheiden wir uns dagegen
auf Anton anzulegen und treffen, so ist unmittelbar nach uns
Bernd dran. Auch er hat dann nur noch uns als Ziel, und in
67% der Fälle wären wir erledigt.

Der Ausweg aus diesem Dilemma, so überraschend es er-
scheint: Wir schießen in die Luft! Bernd wird dann auf An-

ton anlegen. Sollte Bernd treffen, wären wir wieder dran,
und hätten nur noch Bernd als Gegner. Verfehlt Bernd sein
Ziel, so wird Anton Bernd als größte Gefahr identifizieren
und ausschalten. Auch danach wären wir an der Reihe, und
haben immerhin eine Chance, Anton auszuschalten. Egal,
welcher der beiden anderen Spieler treffen mag, am Anfang
der zweiten Runde steht uns nur noch ein einziger Gegner
gegenüber. Das Triell kann somit in ein Duell verwandelt
werden, mit erheblich besseren Aussichten für uns, da wir
wieder den ersten Schuss in diesem Duell haben!

Der erwähnte Sachverhalt hält auch einer genaueren mathe-
matischen Untersuchung stand. Durch die Taktik des ers-
ten Schusses in die Luft kann Claas eine durchschnittliche
Überlebenswahrscheinlichkeit von knapp 40% erreichen.
Beispiele dafür finden sich in [4] und [5]. Werden allerdings
die Parameter variiert, also die Trefferwahrscheinlichkeiten
der Schützen verändert, so kann sich auch die optimale Stra-
tegie ändern. Der Schuss in die Luft muß dann nicht der
Königsweg sein.

Als Fazit bleibt: So manches Mal kann purer Aktionis-
mus (in diesem Falle einfach drauf loszuschießen) doch
die schlechtere Wahl gegenüber einem gelassenen Aussit-
zen der Situation sein.

Literatur

[1] Andrews, M. W.: Anyone for a Nontransitive Para-
dox? The Case of Penney-Ante, 2004

[2] Gardner, M.: Mathematical Puzzles and Diversions,
Penguin Books Ltd, Harmondsworth, England, 1959

[3] Graham, R. L., Knuth, D., Patashnik, O.: Concrete
Mathematics: A Foundation for Computer Science,
2nd edition, Addison-Wesley, 1994

[4] Kilgour, D. M.: The Sequential Truel, International
Journal of Game Theory, Volume 4, Number 3, Physi-
ca / Springer Verlag, 1975

[5] Kilgour, D. M., Brams, S. J.: The Truel, Ma-
thematics Magazine 70, 5, S. 315-326, 1997,
http://www.econ.nyu.edu/cvstarr/working/1997/RR97-
05.PDF

[6] Penney, W: Problem 95: Penney-Ante, Journal of Re-
creational Math. 7 (1974), S. 321.

[7] Phillips, H.: Question time; an omnibus of problems
for a brainy day, Farrar & Rinehart, LCCN 38-
005540, New York, 193

[8] Singh, S.: Fermats letzter Satz, Deutscher Taschen-
buch Verlag, München, 7. Aufl. 2002

4

24. Chaos Communication Congress

Volldampf voraus! 13

27. - 30. Dezember 2007, Berlin

14 24C3

AES: side-channel attacks for the masses

lecture

Hacking

Tag 1 17:15

Saal 2

en

Victor Muñoz

http://www.ingenieria-inversa.cl/AES02.pdf AES: side-channel attacks for the masses

AES (Rijndael) has been proven very secure and resistant to cryptanalysis, there are not
known weakness on AES yet. But there are practical ways to break weak security systems
that rely on AES.

In this lecture we will see how easy could be retrieve AES keys attacking the implementations,
when you have physical access to the box that tries to hide a key you can easily spot it, such
kind of security could be just named obfuscation but is widely used in DRM technologies like
AACS.This is just a demonstration that using a strong security algorithm like AES is not of much
sense when give the key somehow obfuscate to the attacker, remember that the security chain is
as strong as the weakest of their components.

24. Chaos Communication Congress

Volldampf voraus! 15

AES: side-channel attacks for the masses.
(rev 0.2)

Victor Muñoz

vmunoz@ingenieria-inversa.cl

October 2007

Abstract.

AES (Rijndael) has been proven
very secure and resistant to
cryptanalysis, there are not
known weakness on Rijndael
algorithm up to day. But there
are some practical ways to
break weak security systems
that rely on AES.

Introduction.

AES has been subject to
exhaustive cryptanalysis
efforts, but none of them could
break the cipher.

The newest attacks can break
only short-cut versions of AES,
with a reduced number of
rounds (up to 9 rounds on AES-
192), the most fruitfully
techniques used were Collision
Attack, Square Attack,
Impossible Differential,
Truncated Differential and
Related Key, you could see a
summary of the cipher breaking
level of such techniques in [1],
and see a briefly description of
some of them in [2].

The most practical attacks on
AES are side-channel attacks,
that don't intend to attack the
algorithm itself, but look to
reconstruct the key from secret
leakage through the physical

implementation of the
algorithm; such leak of
information could be –among
others- Power Consumption,
Time, Electromagnetic
Radiation, and etcetera.

In AES breaking quest Simple
Power Analysis and Differential
Power Analysis were used
roughly on attacks to smart-
cards as stated in [x]. Also
Cache Timing Attacks are well
known, but seem a little hard to
use it in real world situations,
also they may need clock cycle
level accuracy in the timing
measurements, and big
amounts of sampling, those
Cache Timing Attacks do not
seems feasible for other
scenarios than process-to-
process attacks (ie: remote key
retrieval).

Suppose you are in a dealing
with a process-to-process
situation, that means that your
offensive process has some
access to the overall system,
then why to bother to use a
complex attack when you could
use some other meaning to
spot AES keys in no time?.

In this document we will see 2
methods for attack AES that
should work with no problem in
real world situations and are

27. - 30. Dezember 2007, Berlin

16 24C3

not exclusively for neither
laboratory experiments nor
concept proofs.

Those attacks are intended to
retrieve an AES key when you
have physical access to the
machine you want to attack,
one method require you have
full access to the system
meaning you could install a
debugger or exception handler,
and full access to the process
you want to attack.

The second method is simpler
to implement and you only
need to have reading access to
memory of the victim process,
extending this method you
could gain access to AES key
directly from the RAM IC
modules assuming the RAM is
not encrypted, the AES
implementation is software
based, and of course all the key
processing is not fit just in the
internal CPU data cache.

Why could you be interested to
attack machines that you own
and not a third party victim?
Simple, there exists lot of
boxes that come locked (and
limited) only to run the
software singed for the box
vendor, machines like
videogame consoles, set-top
boxes, cell phones, routers, etc.

Such key retrieving activity has
been very useful –for example-
in the efforts to circumvent
DRM schemes like AACS, that
rely strongly on AES, your
AACS licensed player software
hides you the keys needed for
decode a movie, and that

simply prevent you to make
your own media player or see
your movies in any free
operating system, moreover
you could not see a HD movie
at full resolution in a non HDCP
licensed (and yet expensive)
monitor.

Easy AES key retrieval
History.

Let's begin with a little of
history, muslix (the former
hacker of AACS system) [4],
has got the keys needed to
consider AACS cracked back in
December 2006 without the
need for tracing or debugging
any bit of code, the method he
used was simply guess the
decrypted header of a video
stream block and run a key
finder in a memory dump of the
process of the AACS enabled
player software trying every 16
continuous bit as keys, and that
lead him –just in seconds- to a
VUK (Volume Unique Key)
needed to decrypt the whole
movie, and see it in any player,
setup or OS that you want.

We are going to refer here to
the above attack as known-
plaintext/key within process
memory (in rigor was guessed-
plaintext and not known-
plaintext).

This attack was recognized by
the same AACS LA on January
24, 2007 [5], and from that
moment AACS scheme was in
fact full compromised.

Some months after the original
attack, more attacks come to

24. Chaos Communication Congress

Volldampf voraus! 17

the AACS scheme, all those
attacks have something in
common: AES key spotting with
a little of effort in comparison

with the state of art side-
channel attacks on AES.

Reference

[1] http://www.iaik.tu-graz.ac.at/research/krypto/AES/ - IAIK Krypto
Group - AES Lounge

[2]
http://www.iaik.tugraz.at/aboutus/people/oswald/papers/aes_report.
pdf - AES - The State of the Art of Rijndael’s Security

[x]

[4] http://forum.doom9.org/showthread.php?t=119871

[5] http://www.aacsla.com/press/ January 24, 2007

27. - 30. Dezember 2007, Berlin

18 24C3

Analysis of Sputnik Data from 23C3
Attempts to regenerate lost sequences

lecture

Science

2007-12-29 16:00

Saal 2

en

Tomasz Rybak

http://www.openbeacon.org/ Main page of Sputnik Project
http://www.bogomips.w.tkb.pl/sputnik.html My page with some analysis
http://pmeerw.net/23C3_ Page with analysis made by Peter Meerwald
http://wiki.openbeacon.org/wiki/Datamining Open Beacon Wiki about analysing data

In December 2006, in BCC 1000 atendees were wearing Sputnik Tags. Data was stored, and
then made available for analysis. Unfortunately all IDs of tags were lost. This lecture
presents what was stored, what happened to it, and attempts of reconstructing IDs and
sequences of movements.

Presentation shows simple statistics of Sputnik data. The main part is description of ways of
generating sequences of packets generated by tags. Two methods, local ang global are
described, with few variants. Problems with using those methods are presented.

24. Chaos Communication Congress

Volldampf voraus! 19

Analysis of 23C3 Sputnik data

Tomasz Rybak
tomasz.rybak@post.pl

This article describes attempts to analyse data coming from Sputnik project gathered during 23rd
Chaos Communication Congress. The most significant problem was recovering lost sequence identifiers,
and this is main subject of article.

1 Sputnik idea

Sputnik is RFID system intended to trace people in small areas, and buildings. Each person is
wearing tag that transmits its identifier in regular time intervals to allow to store this persons position
at those moments. System was used during previous, 23rd Congress, and during Chaos Communication
Camp 2007. Data from Camp has not yet been released, and this article describes analysis performed
on data from 23C3.

After releasing data there were few web pages created describing system and data, and trying to
analyse it. The main page of project1 is maintained by creators of Sputnik system. Wiki of OpenBeacon
contains page2 with discussion about released data. Peter Meerwald came with page3 presenting come
analysis of gathered data. Kaners page4 contains parser of log files, allowing to get information about
only particular ID. My page5 contains programs and results described in this article.

2 Hardware

Ordinary RFID systems are operating in range of few dozens kHz, and use passive tags. Tag does
not contain any power source; it is powered by reader during reading process. So without reader it
can do nothing. Sputnik uses active tags; they have own battery and transmit data whatever there is
reader listening to it or not. Using own battery allows for having high power and thus high range of
transmission. Range in buildings is up to the 10m even through dry walls. Concrete walls tend to block
signal. Because transmission occurs at 2.4GHz, human body decreases power by about 50%.

Thanks to own battery tag has control over transmission power and can send signals varying in
strength. This allows for estimating distance from reader. During 23C3 25 readers were placed in BCC
in such a way that in most cases more than one reader saw tag. This, because of possibility of estimating
distance from reader, allows for estimation of position of tag.

First readers were large boxes using Power Ethernet to communicate with the server and to power
themselves. During Camp Milosz Meriac presented USB reader6, small device, powered and transmitting
data using USB. It acts like terminal, sending data in text format; computer can receive read packets, and
send commands to it. Additionally it can also serve as tag, as it have full transmitter on board. Because it
is more sophisticated than tag, user has more control over sent RFID packets. It creates /dev/ttyACM*
device and sends text in either “ID,Sequence,strength,flags” or “RX: ID,strength,number” format, de-
pending on version of firmware. It can be reprogrammed directly using USB, without any additional
hardware.

1 http://www.openbeacon.org/
2 http://wiki.openbeacon.org/wiki/Datamining
3 http://pmeerw.net/23C3 Sputnik/
4 http://cakelab.org/ kaner/sputnik 01/
5 http://www.bogomips.w.tkb.pl/sputnik.html
6 http://wiki.openbeacon.org/wiki/OpenBeacon USB

27. - 30. Dezember 2007, Berlin

20 24C3

3 Data format

Data gathered during 23C3 was made available as both XML and binary files.

XML file
Consisted of “observation” tags with following attributes:

id ID of tag

time

position position of tag; (0, 0, 0) if unknown

direction always (0, 0, 0)

priority always the same value 24

min-distance always 0.0

max-distance always 255.0

observer URL of aggregating station; only one value present in file

observed-object URL of station together with tag ID

XML file contains very small portion of data that was gathered during 23C3. It has only 357974
entries, where full data set is 11.1 million of observations. It does not contain details of readers used
to calculate positions of tags. This omission is important, as about 1/3rd of observations has no mean-
ingful position calculated, probably because in those cases there was not enough data to calculate those
positions. Also XML file contains data from only few hours for each day of Congress; probably those are
hours when server was active. Number of observations during the Congress stored in XML file is shown
in Figure 3.

Because of having no sequence numbers and reading stations used to calculate positions, I did not
use XML data in analysis.

Data from binary file was more useful for analysis, although it contained errors. Because of error in
server software, identifiers of tags were not saved.

Binary format according to source code

0-4 timestamp

5-8 reader station IP

9 size of frame (0x10)

10 protocol (0x17)

11 flags (0x02 — button pressed)

12 strength of signal

12-16 sequence number

17-20 Tag ID

21-24 check sum

2

24. Chaos Communication Congress

Volldampf voraus! 21

Binary format present in file

0-4 timestamp

5-8 reader station IP

9-12 garbage (used by me to write ID)

13-16 garbage, reversed IP of reader station

17 size of frame (0x10)

18 protocol (0x17)

19 flags (0x02 — button pressed)

20 strength of signal

21-24 sequence number

Missing identifiers made analysis almost impossible. Additional problem were 8 bytes in one of files;
information published on OpenBeacon mailing list allowed me to removed those unnecessary bytes and
to have full data set. Binary data set had 64K repeated readings — observations that were the same as
other observations.

4 Database

Data set so large takes long time to read and parse it. I decided to store it in PostgreSQL database.
In the beginning both XML and binary sets were stored in one table, but then it was divided into two
tables; then more support tables were added; PostgreSQL table inheritance was used to ease operating
on main data tables7.

Created database can be seen as temporal, and when looking at XML data also as spatial one. Such
databases store information about presence of phenomenas in space and time. This database stores
information about presence of tags (and probably persons wearing them) at the place at the moment.
Also activities done to this tags, like pressing button, are stored. Additional spatial data, like geometry
of building and rooms where events were held, and temporal data (schedule of Congress) can be used for
more sophisticated analysis.

Created tables

station Describes readers

sputnik base table for storing data; tables with data inherit from it

ccc23 contains binary data from 23C3

ccc23xml contains XML data from 23C3; has additional columns containing values of attributes from
XML file

reader table used to store data received by USB reader

adjacency stores count of readings seen by pairs of readers

room describes lecture rooms

event describes events that took place during 23C3; taken from Schedule XML file
7Scripts creating database can be downloaded from my web page

3

27. - 30. Dezember 2007, Berlin

22 24C3

Base table for holding data from tags

id

time

sequence value of sequence counter

strength strength of signal

station id of station that received this signal

tags array of data, like pressed button

XML data table
is like raw data table and also contains:

position position of tag

plane position on the floor

direction direction; currently only (0. 0, 0)

observer

observedobject

priority

mindistance

maxdistance

Table of rooms
Describes room in which events (lectures) were taking places.

id identifier of room

name name of room: “Saal 1”, “Shelter foo”, . . .

shape path describing room shape. Currently empty column; data to fill it could be taken from GPS
data or from building plans

ymin

ymax

bbox Is it necessary, or better use geometry calculations or PostGIS?

Event table
Describes information about events. Populated using XML schedules published on

http://www.ccc.de/

id identifier of event

organizerid

name name of event

place identifier of room event is taking place

description human-readable description

address URL of description of event

4

24. Chaos Communication Congress

Volldampf voraus! 23

start timestamp of beginning moment of event

finish timestamp of end moment of event

Table containing data from 23C3 occupies about 700MB on hard drive. Data types used to store
sequence and time values occupy 8 bytes each; index for each of those columns takes 250MB. Sequence
identifier is stored as 4 byte integer and its index takes about 130MB. Creation of those indexes is
necessary to have database offering good performance. This is not huge database, but is rather large for
desktop computer.

Large amounts of rows can be changed when operations on data are performed. To be able to
find good query plan, PostgreSQL needs to have accurate statistics of stored data. PostgreSQL does not
update rows in place, but creates new row and marks old as deleted; this technique is called MultiVersion
Concurrency Control (MVCC). So once in a while database needs to be vacuumed to remove all those
deleted rows and to gather statistics. Autovacuum is daemon that takes care of observing all tables
and performing vacuum when it is needed. Its default settings are too low for Sputnik data. The more
reasonable is to analyse data table after 0.5% rows were changed and vacuum after 10% rows were
changed. It makes sense to have more aggressive autovacuum by setting cost limit to 500 and delay to 0.

PostgreSQL client library, libpq, fetches entire result data set into RAM. This can be problem when
exporting Sputnik data from database. I was getting “out of memory” error, so I had to use cursor to
be able to retrieve data set partially. Solving this problem internally in libpq library (by using internal
cursor) to be able to fetch large data set partially is in ToDo list of PostgreSQL.

5 Analysis of data

To understand further operations, one needs to understand how internally tags work. In each trans-
mission tag sends its ID and strength of signal it uses to transmit. Each transmission is encrypted using
XXTEA. To avoid replay attacks, it is necessary to change packets. Because adding real time clock would
be too complicated, ever-increasing counter was added. Base station discards all packages with counter
numbers less that the one seen previously. To avoid problems with reset of tag (removing battery) when
counter is again set to 0, counter was divided. Higher word was saved on reset, and lower not. So after
reset tag increases higher word, so counter value always grows. This feature means that gaps occur in
counter values sequences when tag is reset. To avoid collisions, each tag transmits and sleeps random
time, from 2 to 4 seconds.

5.1 Basic graphs

Following pictures present simple characteristics of data. They are based on work done by Peter
Meerwald, mostly to make sure that data was correctly imported. Numbers present on following figures
are larger than presented by Peter Meerwald. He was using hash tables to store Sputnik data, so he had
not seen 64k repeated observations, which become visible in database.

Figure 1 presents how many packets were seen by more than one station. It shows only situations
where stations were seeing more than 1000 common packets. It can be used to deduce how people were
walking inside Congress Center, and also could be used to deduce positions of readers inside building.

Figure 2 shows number of packets seen in entire system in each minute. It can be seen that during
day there is high activity, and during night hours activity is very low, because most of attended left
the BCC.

Figure 3 shows activity of all XML data points. It shows both observations containing valid estimated
position, and position “0, 0, 0”. Activity in the beginning consists of observations with invalid position;
almost all later observations contain valid positions.

Following tables show number of packets that each reading station has received and number of received
packets with particular strength of signal.

Packets read by each station

5

27. - 30. Dezember 2007, Berlin

24 24C3

Figure 1: Pings read by more than one station (> 1000)

Figure 2: Number of packets read during one minute

Figure 3: Number of packets read during one minute including unknown points

6

24. Chaos Communication Congress

Volldampf voraus! 25

Id IP address count

2 10.254.2.3 1322696
21 10.254.5.21 880833
3 10.254.2.12 760606
15 10.254.1.6 758782
18 10.254.5.2 596466
14 10.254.4.12 589640
20 10.254.8.14 585443
26 10.254.1.16 570525
5 10.254.1.7 568765
4 10.254.2.10 563488
1 10.254.4.6 542657
16 10.254.1.12 532699
22 10.254.4.11 528187
11 10.254.1.22 494524
10 10.254.1.5 448760
9 10.254.2.5 428565
8 10.254.3.9 376396
24 10.254.3.5 231483
23 10.254.7.14 225075
17 10.254.0.254 187078
6 10.254.3.13 130379
13 10.254.0.7 129144
12 10.254.3.21 54863
25 10.254.0.100 8524

Strength of packets
Strength count

0 182874
85 568413
170 1167287
255 9225658

5.2 Rebuilding sequences

To be able to analyse data and gain some knowledge from it, sequences need to be restored. It
requires joining single packets into sequences and then attaching unique number into each found sequence.
Unfortunately original tag identifiers are lost and it is impossible to recover them; but even without them
restoring sequences will allow for analysis of data.

Global searching requires large amounts of CPU time, RAM and disk resources, so first program was
using local search for short sequences.

Following snippet presents ideal situation when building sequences. It takes first packet and then
tries to find next one, that has next value of counter, and is 1 or 2 seconds from previous one. It does
not take into consideration gaps in sequences because of person leaving BCC, or because one is not in
the range of any readers, or when tag is transmitting too weak signal to be received by any of readers.
However it presents idea of finding local sequences; following functions are using this idea and add code
dealing with gaps and choosing one packet that can be added to sequence when there is more than one.

First attempt of building sequences

SELECT time, extract(’epoch’ from time), sequence

FROM sputnik.sputnik WHERE id IS NULL AND

time BETWEEN %s::TIMESTAMP WITH TIME ZONE

AND %s::TIMESTAMP WITH TIME ZONE+%s::INTERVAL

for i in c.fetchall():

old_e, old_s = int(i[1]), int(i[2])

old_major = old_s/65536

old_minor = old_s%65536

p = []

7

27. - 30. Dezember 2007, Berlin

26 24C3

for j in data:

e, s = int(j[1], int(j[1])

major = s/65536

minor = s%65536

probable = (major == old_major and minor == old_minor+1)

or (major == old_major+1 and minor == 0)

if probable: p.append([e, s])

if len(p) > 0:

print old_e, old_s,

for j in p: print j[0], j[1],

Basic idea of algorithm for searching local sequences is enhancements of code above. It takes all
points from choosen period of few dozens seconds. To find all sequences of ticks there it assumes that
ticks are about 1.5s from one another. Starting from the lowest counter value it tries to find the next
value. In case of very close values of counter, difference of time is 1 or 2 seconds. In case of longer time
distances, difference should be closer to 1.5s for every tick. It ignores data about strength of signal or
stations that were able to receive it.

When more than one packet can be chosen to extend sequence conflict occurs, and this problem must
be resolved. Conflict may be because either at the same time there are two different counter values, or
the same value occurs at different moments. In case of either conflict we must choose only one packet to
include in sequence, and discard another one. It needs to be noticed that not only two, but more packets
may be involved in conflict. The general case is presence of more than one sub-sequence that can extend
existing sequence. Only one of them must be chosen, as adding all sub-sequences will destroy existing
sequence by introducing decreases in either time or counter values.

Sub-sequence may be chosen by taking into consideration length or resemblance to already existing
sequence. Using separate function for choosing sequence to add allows for researching on different criteria
of choosing and introducing more sophisticated criteria.

Alternative solution is creation of function returning next values of time and counter, basing on
sequence that is being rebuilt. This is more complicated, as it requires knowing exact parameters of tag,
especially time when it was started or reset, and exact time tag sleeps between transmissions.

Function GetTickDistance returns difference between counter values. It tries to take reset into
consideration by treating reset as difference of 1. It decides that reset occurred when values passed as
arguments have differing high words. However if there is less than about one minute to change of high
word, it does not assume reset was involved.

Distance between sequence values

Assumes a <= b

Will not work when there is more than 1 overflow

def GetTickDistance(a, b):

majora = a/65536

minora = a%65536

majorb = b/65536

minorb = b%65536

Inside one minor, or less than minute to overflow

if majora >= majorb or minora >= 65500:

return b-a

else:

return majorb-majora + minorb+1

To be able to recreate sequences it is necessary to create all alternatives and then choose the best
ones. Hashes are used to store all counter values that were received at any moment, and all moments
when any value of counter was received. All keys of hashes are read in increasing order, and all values
stored under every key are considered as extensions of sequences. If considered point can be added to
sequence, it is. If not, conflict is detected. Previous value is removed from sequence, and both points are
added to special list of alternatives. In such case each subsequent point is treated as extension not of
main sequence, but alternative sub-sequences. If it can be added to all of them, alternatives are stored,

8

24. Chaos Communication Congress

Volldampf voraus! 27

and this point is added to main sequence. If it can be added to only some of sub-sequences, conflict still
remains. If it cannot be added to any of sub-sequences, it is added as another alternative sub-sequence.

Function FindBestSequence takes sequence and all alternative sub-sequences calculated by previous
function and builds optimal sequence. It chooses the best possible sub-sequences to add. To choose the
best ones it uses slope of sub-sequences, and chooses one with the slope closest to 1.5. Minimal square
difference is used to find slope closest to ideal.

Finding best sequences amongst all created

Sequence with len >= 3

def FindBestSequence(a):

b = max(map(len, a))

c, a = a, []

for i in c:

if len(i) == b: a.append(i)

Find minimal difference between min and max, in case of many alternative sequences

best = i = a[0]

ds = float(i[1][0]-i[0][0])/GetTickDistance(i[0][1], i[1][1])

mini = maxi = ds

for j in range(1, len(i)-1):

ds = float(i[j+1][0]-i[j][0])/GetTickDistance(i[j][1], i[j+1][1])

mini = min(mini, ds)

maxi = max(maxi, ds)

c = (mini-1.5)*(mini-1.5)+(maxi-1.5)*(maxi-1.5)

for i in a[1:]:

ds = float(i[1][0]-i[0][0])/GetTickDistance(i[0][1], i[1][1])

maxi = mini = ds

for j in range(1, len(i)-1):

ds = float(i[j+1][0]-i[j][0])/GetTickDistance(i[j][1], i[j+1][1])

mini = min(mini, ds)

maxi = max(maxi, ds)

d = (mini-1.5)*(mini-1.5)+(maxi-1.5)*(maxi-1.5)

if d < c: best, c = i, d

return best

Described algorithm can be implemented in two ways. Main loop may iterate over time and check
all possible counter values, or it can iterate over counter values and check all moments of appearance of
this value. Those approaches should be equivalent, but iterating over counter values gives as result more
and longer sequences. If using more CPU time is not a problem, both variants can be used and the best
results given by any of them are chosen, independently for each considered interval.

First code that was used to use large part of data was implementation of O(N3) algorithm. For each
point it was finding whether any of other points can be added to the sequence by checking if equation
Δs = aΔt, 1.0 ≤ a ≤ 2.0 was met. After finding all possible points it was generating all possible
alternatives from this chosen set. As it was checking all other points for every point from given interval,
this operation was O(N2). If any sequence was found, it was removed from data set, and entire process
was started from the beginning, thus O(N3) time cost.

O(N3) algorithm

SELECT DISTINCT time, extract(’epoch’ from time), sequence

FROM sputnik.sputnik WHERE id IS NULL AND

time BETWEEN %s::TIMESTAMP WITH TIME ZONE

AND %s::TIMESTAMP WITH TIME ZONE+%s::INTERVAL

a, b, again = 0, 0, True

while again:

again, s = False, []

for i in data:

majort, majors = int(i[1]), int(i[2])

p = [[majort, majors]]

for j in data:

minort, minors = int(j[1]), int(j[2])

9

27. - 30. Dezember 2007, Berlin

28 24C3

dt = minort-majort

ds = GetTickDistance(majors, minors)

if dt > 0 and ds <= dt and dt <= 2*ds:

p.append([minort, minors])

if len(p) > 1:

again = True

r = CreateAllSequencesSeqs(p)

s = FindBestSequence(r)

a += 1

if len(s) > b: b = len(s)

break

if again:

for i in s:

UPDATE sputnik.sputnik SET id = %s

WHERE sequence = %s AND time = to_timestamp(%s)

for j in data:

if i[0] == j[1] and i[1] == j[2]:

data.remove(j)

break

id += 1

Improving speed of this algorithm came from observation that the longest sequences are be made
when starting from the lowest time and lowest counter values. Query was changed to return sorted
result. Algorithm was changed to take first tuple, and try to find all other tuples that can make sequence
with the first one. If sequence was found, it was removed from data set; if not, only the first tuple was
removed. So for each tuple all other tuples were considered, which gives O(N2). Because there is no
repetition of this process if sequence is found, but further tuples are processed, this cost remains.

This algorithm gives the same results as previous one; this was proved by comparing sequences
generated by both for few intervals. Cost of those algorithms can be slightly higher than O(N3) and
O(N2) when considering building and comparing alternative sub-sequences. However size of such sub-
sequences is small when compared to main sequences. Also size of sub-sequences tend to remain constant
even when increasing length of analysed interval, which increases size of generated sequences.

O(N2) algorithm

SELECT DISTINCT time, extract(’epoch’ from time), sequence

FROM sputnik.sputnik WHERE id IS NULL AND

time BETWEEN %s::TIMESTAMP WITH TIME ZONE

AND %s::TIMESTAMP WITH TIME ZONE+%s::INTERVAL

ORDER BY sequence, time

a, b = 0, 0

while len(data) > 0:

s, i = [], data[0]

majort, majors = int(i[1]), int(i[2])

p = [[majort, majors]]

for j in data[1:]:

minort, minors = int(j[1]), int(j[2])

dt = minort-majort

ds = GetTickDistance(majors, minors)

if dt >= 0 and ds <= dt and dt <= 2*ds:

p.append([minort, minors])

if len(p) > 1:

r = CreateAllSequencesSeqs(p)

s = FindBestSequence(r)

a += 1

if len(s) > b: b = len(s)

for j in s:

UPDATE sputnik.sputnik SET id = %s

WHERE sequence = %s AND time = to_timestamp(%s)

for k in data:

10

24. Chaos Communication Congress

Volldampf voraus! 29

if j[0] == k[1] and j[1] == k[2]:

data.remove(k)

break

id += 1

else:

data.remove(i)

Function JoinIDs computes all sequences for one interval and interval after that, and then tries to
join found sequences. For each sequence in main interval it calculates coefficient of line created by its
last point and by first point of sequence from the next interval. If any line with coefficient between 1.0
and 2.0 is found it means that those sequences are candidates for joining. However they would also have
to have the same coefficients themselves before they could be joined.

Function trying to join found sequences

def JoinIDs(c, t, d, period):

main = GetLines(c, t.strftime("%Y-%m-%d %H:%M:%S+01:00"), period)

after = GetLines(c, (t+d).strftime("%Y-%m-%d %H:%M:%S+01:00"), period)

before = GetLines(c, (t-d).strftime("%Y-%m-%d %H:%M:%S+01:00"), period)

for i in sorted(main.keys()):

majort = main[i][’max-time’]

majors = main[i][’max-seq’]

for j in sorted(after.keys()):

minort = after[j][’min-time’]

minors = after[j][’min-seq’]

dt = minort-majort

ds = GetTickDistance(majors, minors)

if ds <= dt and dt <= 2*ds:

print "Can Join"

print "\t", main[i][’id’], main[i][’length’], main[i][’min-time’], main[i][’min-seq’],

print main[i][’max-time’], main[i][’max-seq’]

print "with", ds, dt, float(dt)/ds

print "\t", after[j][’id’], after[j][’length’], after[j][’min-time’], after[j][’min-seq’],

print after[j][’max-time’], after[j][’max-seq’]

I think it could be even possible to improve local algorithm to have O(N) time cost. However it was
not implemented so I do not know if it is really possible and if it would give good results.

Function calculating distance in counter values was changed, as it was producing strange sequences
(65600, 132000, 512000, . . .). Reset was ignored, and distance was ordinary difference of counter values.
However this was not helpful. Local algorithms were not able to find long enough sequences. Although few
found sequences were rather long (up to 20 packets for 1 minute), but most found were only consisting of
2 or 3 packets. This was leading to large gaps between sequences from consecutive intervals, and troubles
with joining them.

New distance in sequence counter function

Assumes a <= b

Will not work when there is more than 1 overflow

def GetTickDistance(a, b):

majora = a/65536

minora = a%65536

majorb = b/65536

minorb = b%65536

return b-a

Scatter plots drawn for long intervals are revealing straight lines. This lead to the idea to find straight
lines (as drawn in geometry) and to treat them as sequences. To avoid problems with reset calculations
were done inside 64k blocks of counter values.

The best way to find the longest sequences is to start with point with the lowest values of counter
and time. Then try to draw lines through it and all other points from the range. Choosing slope that

11

27. - 30. Dezember 2007, Berlin

30 24C3

results in line going through the most points gives the longest sequence. This is greedy algorithm as in
each step the largest sequence is chosen.

To choose the best line coefficient histogram of all slopes is used, with bucket of size 0.1. To be sure
that no point is left because of rounding errors, range of slopes is used: all points that are on lines with
slopes differing less than ±0.3 from chosen slope are included into created sequence.

Because for each point all other points are used to calculate slopes and then all points that are in
right coefficient range are chosen, time cost is O(N2).

It finds long sequences. It leaves only about 4000 points (out of 11.1 million) without any sequence.
However rather strange line coefficients are found; besides ordinary 2.4, 2.5, it comes with 0.1, 0.4, 0.5,
9.9, 10.0, 8.1, . . .

Function FindIDs takes range of counter values and tries to find all sequences in this range. It finds
all counter values and for each value finds all times it occurs; this is similar to hashes used in local
algorithms. Then for each starting point histogram of all coefficients of lines is created and the largest
value is used. Query similar to one calculating slopes is used to mark all points as belonging to one
sequence. Update is done by one SQL query.

Finding sequences in global manner

def FindIDs(connection, sa, sz, ta, tz, id):

SELECT DISTINCT sequence FROM sputnik.sputnik WHERE id IS NULL

AND sequence BETWEEN %s AND %s ORDER BY sequence

for s in c.fetchall():

s0 = s[0]

SELECT DISTINCT time FROM sputnik

WHERE id IS NULL AND sequence = %s

for t in

t0, hash = t[0], {}

SELECT DISTINCT ON (sequence, time) time, sequence,

(extract(’epoch’ FROM (time-%s)))::float/(sequence-%s)::float

FROM sputnik.sputnik WHERE id IS NULL AND time > %s AND

sequence BETWEEN %s AND %s AND sequence != %s

ORDER BY sequence, time

for i in c.fetchall():

k = int(i[2]*10)

if 0 < k and k <= 100:

hash[k] = hash.get(k, 0)+1

i = c.fetchone()

k = -1.0

if len(hash) > 0:

m = max(hash.values())

for i in sorted(hash.keys()):

if m == hash[i]:

k = float(i)/10.0

break

UPDATE sputnik.sputnik SET id = %s WHERE id IS NULL

AND sequence = %s AND time = %s

UPDATE sputnik.sputnik SET id = %s WHERE id IS NULL AND

sequence BETWEEN %s AND %s AND sequence != %s AND

(extract(’epoch’ FROM (time-%s)))::float/(sequence-%s)::float

BETWEEN %s AND %s

id += 1

return id

Following code shows calling of function for creating sequences. First the lowest unused value for
identified sequence is found, and then function FindIDs is called for each of the values of high word of
tag counter. First range was divided into time intervals so program operates on smaller data sets, but
because of error in code time interval was not respected and first call calculated all sequences from entire
range.

Calling a sequence finder

12

24. Chaos Communication Congress

Volldampf voraus! 31

Figure 4: Generated sequence; first set, number 1

id = (SELECT MAX(id) FROM sputnik.sputnik WHERE id IS NOT NULL)+1

ta = ’2006-12-27 12:59:19+01:00’

tz = ’2006-12-30 15:59:59+01:00’

id = FindIDs(connection, 0, 2*65536, ta, tz, id)

Very large data set, 2924448 rows

id = FindIDs(connection, 131072, 196608, ’2006-12-27 12:59:19+01:00’, ’2006-12-27 18:00:00+01:00’, id)

id = FindIDs(connection, 131072, 196608, ’2006-12-27 18:00:00+01:00’, ’2006-12-28 00:00:00+01:00’, id)

id = FindIDs(connection, 131072, 196608, ’2006-12-28 00:00:00+01:00’, ’2006-12-28 17:00:00+01:00’, id)

id = FindIDs(connection, 131072, 196608, ’2006-12-28 17:00:00+01:00’, ’2006-12-29 00:00:00+01:00’, id)

id = FindIDs(connection, 131072, 196608, ’2006-12-29 00:00:00+01:00’, ’2006-12-29 16:00:00+01:00’, id)

id = FindIDs(connection, 131072, 196608, ’2006-12-29 16:00:00+01:00’, ’2006-12-30 00:00:00+01:00’, id)

id = FindIDs(connection, 131072, 196608, ’2006-12-30 00:00:00+01:00’, ’2006-12-30 15:59:59+01:00’, id)

Very large data set, 2076875 rows

id = FindIDs(connection, 3*65535, 4*65536, ta, tz, id)

Very large data set, 1277488 rows

id = FindIDs(connection, 4*65535, 5*65536, ta, tz, id)

Very large data set, 1016195 rows

id = FindIDs(connection, 5*65535, 6*65536, ta, tz, id)

Very large data set, 620763 rows

id = FindIDs(connection, 6*65535, 7*65536, ta, tz, id)

Figures 4 to 9 show sequences generated by this algorithm. Some sequences are the proper ones, but
other are wrong; their points really belong to many different sequences.

Figures 5 and 6 show sequences that from the beginning look like collage of many sequences. They
show the main problem of algorithm: range of allowed coefficients is too wide, and too many points are
added to sequence. The farther away from the first point, the more obvious it is.

Figure 7 shows sequence that in the beginning is correct, and gets wrong only in the end. So first
part should be preserved, and after it, somewhere is this gap, sequence should end.

Figure 8 shows sequence that is generated by all variants of global algorithm.
Sequence shown in Figure 9 shows errors that came from integer overflow. Because initially I did not

use Python large integers, counter values close to 4 billions were treated as small negative values, and
joined with real small values. Column storing counter values was using 64-bit integers, so PostgreSQL
was able to update rows with large counter values, and not destroy other sequences.

Figure 10 shows packets that were not used in any sequence. It was only about 4000 points, and it’s
very good result for data set consisting of 11.1 million of points.

Figure 11 shows size of generated sequences calculated as number of occurrences of pair (time, counter
value); event if packet was seen by more than one reader, it was counted only once. In other words it
shows number of occurrences of tag, not how many times it was seen.

Figure 12 shows size of sequences calculated as number of tuples that are included into each sequence.

13

27. - 30. Dezember 2007, Berlin

32 24C3

Figure 5: Generated sequence; first set, number 3

Figure 6: Generated sequence; first set, number 7

Figure 7: Generated sequence; first set, number 19

14

24. Chaos Communication Congress

Volldampf voraus! 33

Figure 8: Generated sequence; first set, number 32

Figure 9: Generated sequence; first set, number 7205

Figure 10: Points left without sequence; first set

15

27. - 30. Dezember 2007, Berlin

34 24C3

Figure 11: Histogram of sizes of generated sequences for the first set

Figure 12: Histogram of sizes of generated sequences for the first set

Program was running for about 72h on AMD Duron 1.3GHz with 768MB RAM and single HDD IDE
7200RPM. It was IO-constraint, probably because of database size larger than available RAM; CPU
was not much used. Clustering data table according to counter values could improve performance in
the beginning. However PostgreSQL does not try to preserve clustering, so after adding many points to
sequences clustering would be lost and Input/Output capacity would again become limiting factor. Also
PostgreSQL decides to scan entire table if there is more than 5% rows in result, so in this algorithm
entire data table is read.

The main problem with algorithm are sequences that contain point that should belong to many
different sequences. This is caused by too wide range of possible coefficient values. The more distant
from the initial point, the more visible the problem is.

Figure 13 shows histogram of line coefficients for buckets of size of 0.1. Figure 14 shows histogram
of line coefficients for buckets of size of 0.001. As can be seen, first histogram presents false situation;
number of points in many lines that consist of small number of points but have close coefficient values
is able to outnumber one line with high number of points. So in this situation instead of long one line
short one is chosen, and all its neighbours that were able to outnumber the long ones are joined to this
improper sequence.

Improvements of algorithm were necessary to get better results. First was refactoring of code; most
of activities were moved into functions. Second improvement was creation of SQL aggregate function to
choose only one counter value at any given time. This function was used together with grouping with
respect to time, and chosen point was the closest one to the chosen slope. To avoid problems with many

16

24. Chaos Communication Congress

Volldampf voraus! 35

Figure 13: Coefficients histogram for 10 buckets

Figure 14: Coefficients histogram for 1000 buckets

lines joining into one width of histogram buckets was changed to 0.001. Histogram was calculated for
slopes from range 1.0 to 5.0. Additionally range of allowed coefficients was changed from ±0.3 to ±0.001.
However this caused gap at the beginning of each sequence; because of rounding errors in the first few
minutes slope was not close enough to the ideal to be included in chosen range of slopes.

Function sputnik guessbest is SQL aggregate used to choose one point in case of presence of more
than one counter value at the same time. It requires grouping by time in SQL query. It chooses point
which distance from the chosen slope is the smallest. To be able to calculate distance from this line
it needs to know parameters of line; before using this aggregate function sputnik guessinit must
be called. Initialisation function must be called before every query using sputnik guessbest. Both
functions are written in pl/Python and use global hash for PostgreSQL Python functions to store line
parameters and the best found point.

Currently PostgreSQL in Debian does not offer trusted pl/Python, so untrusted pl/PythonU is used.
Creation of functions in untrusted languages requires administrative access to database (usually user
“postgres”) and SECURITY DEFINER during creation to allow ordinary used to use it.

Grouping function

CREATE OR REPLACE FUNCTION sputnik.guessinit(t TIMESTAMP WITH TIME ZONE, sequence BIGINT, slope DOUBLE PRECISION

RETURNS VOID

VOLATILE RETURNS NULL ON NULL INPUT SECURITY DEFINER

LANGUAGE ’plpythonu’ AS

17

27. - 30. Dezember 2007, Berlin

36 24C3

$$

GD["time"] = t

GD["sequence"] = sequence

GD["slope"] = slope

$$;

CREATE OR REPLACE FUNCTION sputnik.guessbest(state BIGINT, t TIMESTAMP WITH TIME ZONE, sequence BIGINT)

RETURNS BIGINT

VOLATILE CALLED ON NULL INPUT SECURITY DEFINER

LANGUAGE ’plpythonu’ AS

$$

if (not GD.has_key("time")) or (not GD.has_key("sequence")) or (not GD.has_key("slope")):

return None

if (t is None) or (sequence is None):

return None

plan = plpy.prepare("""

SELECT (extract(’epoch’ FROM ($1::TIMESTAMP WITH TIME ZONE-$2::TIMESTAMP WITH TIME ZONE)))::float/($3::BIGINT-$4

""", ["timestamptz", "timestamptz", "int8", "int8"])

result = sequence

if state is not None:

r0 = plpy.execute(plan, [t, GD["time"], sequence, GD["sequence"]], 1)

r1 = plpy.execute(plan, [t, GD["time"], state, GD["sequence"]], 1)

if abs(r0[0]["slope"]-GD["slope"]) >= abs(r1[0]["slope"]-GD["slope"]):

result = sequence

else:

result = state

return result

$$;

CREATE AGGREGATE sputnik.guesser (TIMESTAMP WITH TIME ZONE, BIGINT) (

SFUNC = sputnik.guessbest,

STYPE = BIGINT

);

Function Histogram calculates histogram of slopes of all lines going through given point. If there
is more than one slope with the same maximal number of points, the smallest one is chosen. Function
returns slope and number of points in bucket. If it is unable to calculate any slope it returns pair 0, 0.

Histogram function

def Histogram(c, time, sequence, sa, sz):

hash = {}

c.execute("""SELECT DISTINCT ON (time, sequence) time, sequence,

(extract(’epoch’ FROM (time-%s::TIMESTAMP WITH TIME ZONE)))::float/(sequence-%s::BIGINT)::float

FROM sputnik.sputnik WHERE id IS NULL AND

sequence BETWEEN %s::BIGINT AND %s::BIGINT AND

time > %s::TIMESTAMP WITH TIME ZONE AND

sequence > %s::BIGINT""", (time, sequence, sa, sz, time, sequence))

i = c.fetchone()

while i != None:

k = int(i[2]*1000)

if 1000 <= k and k <= 5000:

hash[k] = hash.get(k, 0)+1

i = c.fetchone()

if len(hash) > 0:

m = max(hash.values())

for i in xrange(1000, 5001):

Let’s take the smallest max

if m == hash.get(i, 0):

18

24. Chaos Communication Congress

Volldampf voraus! 37

result = float(i)/1000.0

break

return result, m

else:

return 0.0, 0

Function Line takes as parameters starting point of line, slope of line and allowed range of slopes
and finds all points that lie on that line. It initialises global Python hash, as main query uses aggregate
sputnik guessbest. It retrieves all matching points from database and returns list holding them.

Function finding points on line with given slope

def Line(c, time, sequence, slope, margin, sa, sz):

result = [[time, sequence]]

c.execute("""SELECT sputnik.guessinit(%s::TIMESTAMP WITH TIME ZONE,

%s::BIGINT, %s::DOUBLE PRECISION)""", (time, sequence, slope))

c.execute("""SELECT time, sputnik.guesser(time, sequence)

FROM sputnik.sputnik WHERE id IS NULL AND

sequence BETWEEN %s::BIGINT AND %s::BIGINT AND

time > %s::TIMESTAMP WITH TIME ZONE AND

sequence > %s::BIGINT AND

(extract(’epoch’ FROM (time-%s::TIMESTAMP WITH TIME ZONE)))::float/(sequence-%s::BIGINT)::float

BETWEEN %s::float AND %s::float GROUP BY time

ORDER BY time""", (sa, sz, time, sequence, time, sequence, slope-margin, slope+margin))

i = c.fetchone()

while i != None:

result.append([i[0], i[1]])

i = c.fetchone()

return result

Function FindIDs iterates through all values of counter inside given range, and finds all times when
any counter had particular value. Each such pair is treated as potential starting point of line; histogram
of slopes is calculated, and if returned bucked holds more than 8 points, new sequence is created. Unlike
previous version, this function does not use one update query, but every point is updated by separate
SQL command.

Function finding all lines

def FindIDs(connection, sa, sz, id):

c.execute("""SELECT DISTINCT sequence

FROM sputnik.sputnik WHERE id IS NULL AND

sequence BETWEEN %s AND %s

ORDER BY sequence""", (sa, sz))

start = c.fetchall()

for s in start:

s0 = s[0]

c.execute("""SELECT DISTINCT time FROM sputnik.sputnik

WHERE id IS NULL AND sequence = %s""", (s0,))

for t in c.fetchall():

t0 = t[0]

slope, count = Histogram(c, t0, s0, sa, sz)

if slope > 0.0 and count >= 8:

line = Line(c, t0, s0, slope, 000.1, sa, sz)

for i in line:

UPDATE sputnik.sputnik SET id = %s WHERE id IS NULL AND

time = %s::TIMESTAMP WITH TIME ZONE AND

sequence = %s::BIGINT

id += 1

return id

Figures 15 to 19 show sample sequences generated by improved algorithm.

19

27. - 30. Dezember 2007, Berlin

38 24C3

Figure 15: Generated sequence; second set, number 1

Figure 16: Generated sequence; second set, number 19

Figure 17: Generated sequence; second set, number 24

20

24. Chaos Communication Congress

Volldampf voraus! 39

Figure 18: Generated sequence; second set, number 43

Figure 19: Generated sequence; second set, number 57

Figure 17 shows sequence that is generated by all variants of global algorithm.
Figures 18 and 19 shows generated sequences that have missing some points. Either program did not

add some points that should be taken into those sequences or persons wearing those tags was appearing
and disappearing from sight of readers.

Figure 20 shows size of generated sequences calculated as number of occurrences of pair (time, counter
value); event if packet was seen by more than one reader, it was counted only once. In other words it
shows number of occurrences of tag, not how many times it was seen.

Figure 21 shows size of sequences calculated as number of tuples that are included into each sequence.
Program was running very slowly. It was running for almost 2 weeks before I interrupted it. It could

not go outside first large data set (counter ∈< 2∗65536; 3∗65536 >) so I stopped program and run it for
later counter values. It did not leave the next counter values block. It was using IO subsystem and CPU
more equally. Its slow speed may come from performing more calculations, using pl/Python function,
and updating information about sequences as many individual queries instead of one bulk query.

Generated sequences were initially big, but later they were getting smaller and smaller, down to dozen
points.

Algorithm was joining sequences in spite of aggregate function which was used to guard against it.
Data analysis was showing that some sequences had errors, but as they were more subtle it was not
easily seen on the graphs,

Figure 22 shows two distinct sequences that are joined. Their points are in allowed slope range, and
their packets are interlaced, so even aggregate function can not remove one of them.

21

27. - 30. Dezember 2007, Berlin

40 24C3

Figure 20: Histogram of sizes of generated sequences for the second set

Figure 21: Histogram of sizes of generated sequences for the second set

Figure 22: Interlaced sequences

22

24. Chaos Communication Congress

Volldampf voraus! 41

Figure 23: Collinear sequences

Figure 24: Incorrectly joined sequences

Figure 23 shows three distinct sequences joined into one. They have similar slope and their points lie
in allowed range, so they are joined together, even though that points should create distinct sequences.

Figure 24 shows three sequences that have different slopes, but are also joined. This situation can
be detected by calculating difference of slopes between consecutive points, similarly to differentiating.
The long sequence of differences of the same sign may mean followed by long sequence of differences of
another sign suggests join of different sequences.

Figure 25 shows sequence that have points not placed directly on ideal line. It may seem similar
to previous situation, but (especially if differences between points and slopes are not large) it is single
sequence. The main difference between situation in figures 24 and 25 is number of points that have the
same sign of difference between slopes and absolute difference between those slopes. If both of those
parameters are small, there is single sequence.

New firmware of tags was released during CCC2007. Transmission was not occurring every few
seconds, but about 10 times a second. This, together with USB reader, allowed for analysing if discarding
sub-second parts introduces large error in scope of lines. I took few minutes of readings, and calculated
two slopes, one taking all data into consideration, and another using floor function to discard milliseconds.
Resulted slopes differed on 4th place after comma, so having only seconds when transmission occurred
does not result in error disallowing operating on data.

Either having too wide range and having joined sequences, or having too narrow range and leaving
some points out, without guarantee that appropriate points are included in sequence meant need for
including additional data in searching for good sequences. First of additional variables that could point
whether to include tuple into the sequence was signal strength. Each tag changes strength of sent signal,
either in sequence of 0x00, 0xff, 0x55, 0xff, 0xaa, 0xff, 0xff, 0xff, or in 0x00, 0x55, 0xaa, 0xff, depending
on used firmware version.

First problem would be that in old firmware 5 out of 8 values was 0xff, so it would be difficult to
determine where in sequence of signal strengths particular point is. However analysing of source code

23

27. - 30. Dezember 2007, Berlin

42 24C3

Figure 25: Correctly joined sequence

and Sputnik data revealed that strength of signal was not distinctive between tags. Each tag starts at
the same strength sequence point, so there is no variability between sequences. If more than one point
has the same counter value, they also have the same strength of signal. It can not be used to distinguish
different sequences.

As mentioned earlier, because of rounding errors at the beginning of sequence coefficients do not
have the same values as coefficients for further points. It is necessary to have wider allowed range of
slopes in the beginning and more narrow near the end. This can be accomplished by sigmoid function8.
Function 0.01+ 0.09

1+e(x−500)/100 was used in program. At the distance 0 it generated border of 0.1; its value
was getting smaller to reach 0.01 for argument of 1000. Because of very large exponential values, FPU
exception was generated for arguments greater than about 70000.

Because strength of signal could not be used, stations that received signal from tag were used. The
main assumption was that set of seen stations did not change from one point to another if that points were
close in time. To keep algorithm simple only list of seen stations was considered, not their distribution
in space. Similarity was defined as number of stations in both sets, divided by size of joined sets.

If strengths of signals in both points differ similarity function was slightly changed, and returned
number of stations seen using weaker signal divided by number of stations seen with stronger signal. But
because most of points in data set had the strongest value of signal, there was not many situations with
different signals between points.

To avoid errors shown in Figures 22, 23, and 24, algorithm was changed to retrieve all potential points
that could be added to generated sequence and choose the best one itself. This approach is return to the
idea of generating alternative sub-sequences used in local algorithm.

Points that are in conflict have condition ¬(T1 > T0 ∧ S1 > S0) met. Program creates all possible
sub-sequence from them and then chooses the best one. To choose the best it locally compares lengths,
slopes of sub-sequences and reading stations seen by all sub-sequences and chooses one that is the most
similar to main sequence.

Last version of algorithm differs from previous ones, and those changes can be summarised in “take
more points and choose the best ones”. Instead of using constant range, sigmoid function was used to
include more points in the beginning of sequence. All points are read from database, and program builds
alternative sequences from them. Instead of using custom aggregate function to choose only one point,
standard function aggregating all seen stations into array is used. This array is then used to choose the
best points to include into sequence. The last change is breaking line if it is discovered that created line
has high probability of being two different lines.

Function Similarity returns number from range < 0.0; 1.0 >. This is degree of similarity of two sets
of readers that were able to receive signal from tag. Function uses sets introduced in Python 2.4.

Similarity of seen stations

def Similarity(a, b):

result = 0.0

station0, strength0 = a

8 http://en.wikipedia.org/wiki/Sigmoid function

24

24. Chaos Communication Congress

Volldampf voraus! 43

station1, strength1 = b

size0, size1 = len(station0), len(station1)

if strength0[0] > strength1[0]:

same = 0.0

for i in station1:

if i in station0: same += 1

result = same/len(station1)

elif strength0[0] < strength1[0]:

same = 0.0

for i in station0:

if i in station1: same += 1

result = same/len(station0)

else:

result = float(len(set(station0)&set(station1)))/

float(len(set(station0)|set(station1)))

return result

Function Fetch reads all points from database that can be used to create sequence. It takes all
packets that were received less than two minutes after first point of sequence, and then returns those
which slope lies in range determined by sigmoid function.

Getting all points that can create line

def Fetch(c, time, sequence, slope, sa, sz):

result = [[time, sequence, slope, 0.0]]

c.execute("""SELECT sputnik.array_accum(station),

sputnik.array_accum(strength)

FROM sputnik.ccc23 WHERE id IS NULL AND

time = %s::TIMESTAMP WITH TIME ZONE AND

sequence = %s::BIGINT""", (time, sequence))

i = c.fetchone()

if i != None:

result[0].append(i[0])

result[0].append(i[1])

i = c.fetchall()

Union of first 100s and the rest

c.execute("""SELECT time, sequence,

(extract(’epoch’ FROM (time-%s::TIMESTAMP WITH TIME ZONE)))::float/(sequence-%s::BIGINT)::float,

0.0, sputnik.array_accum(station), sputnik.array_accum(strength)

FROM sputnik.ccc23 WHERE id IS NULL AND

sequence > %s::BIGINT AND sequence <= %s::BIGINT+100::BIGINT AND

time > %s::TIMESTAMP WITH TIME ZONE AND time <= %s::TIMESTAMP WITH TIME ZONE+’100 second’::INTERVAL

GROUP BY time, sequence

UNION

SELECT time, sequence,

(extract(’epoch’ FROM (time-%s::TIMESTAMP WITH TIME ZONE)))::float/(sequence-%s::BIGINT)::float,

0.0, sputnik.array_accum(station), sputnik.array_accum(strength)

FROM sputnik.ccc23 WHERE id IS NULL AND

sequence BETWEEN %s::BIGINT AND %s::BIGINT AND

time > %s::TIMESTAMP WITH TIME ZONE AND

sequence > %s::BIGINT AND

(extract(’epoch’ FROM (time-%s::TIMESTAMP WITH TIME ZONE)))::float/(sequence-%s::BIGINT)::float

BETWEEN %s::float-sputnik.BorderWidth(sequence-%s) AND %s::float+sputnik.BorderWidth(sequence-%s)

GROUP BY time, sequence ORDER BY time""", (time, sequence, sequence, sequence, time, time, time, sequence, s

i = c.fetchone()

while i != None:

result.append([i[0], i[1], i[2], i[2]-result[-1][2], i[4], i[5]])

i = c.fetchone()

return result

25

27. - 30. Dezember 2007, Berlin

44 24C3

Function Lines takes list of all points that were read from database and creates all possible sequences
from them. It is similar to function used in local algorithm.

Calculating all possible sequences from points

def Lines(data):

result = [] candidate = []

for i in data:

num = 0

for j in candidate:

if i[0] > j[-1][0] and i[1] > j[-1][1]:

num += 1

if len(candidate) == num:

if len(candidate) == 1: result.extend(candidate[0])

elif len(candidate) > 1: result.append(candidate)

candidate = [[i]]

else:

for j in candidate:

if i[0] > j[-1][0] and i[1] > j[-1][1]:

j.append(i)

if 0 == num: candidate.append([i])

Add last alternative

if len(candidate) == 1: result.extend(candidate[0])

elif len(candidate) > 1: result.append(candidate)

return result

Function Line takes all sub-sequences and chooses the best line from all given alternatives. Each
of alternatives has calculated up to five factors that are taken into consideration: length, similarity of
slopes in the beginning and in the end, similarity of seen stations in the beginning and in the end. Only
the best sub-sequence gets points for each factor, and then only the best one is chosen. If there is more
than one best alternative, the first one is chosen.

The very important part of this function if condition j[0][0] > result[−1][0] . . . which allows only sub-
sequences which time and counter values are greater than already existing in sequence to be considered
as alternatives. This protects from the problem of having improper sequence in case when one alternative
choosing after another.

Choosing the best line from all alternatives

def Line(lines):

result = []

for i in xrange(len(lines)):

if type(lines[i][0]) != type([]): result.append(lines[i])

else: alternatives = []

if len(result) > 0:

for j in lines[i]:

if j[0][0] > result[-1][0] and j[0][1] > result[-1][1]: alternatives.append(j)

else: alternatives = lines[i]

scores = [0] * len(alternatives)

sizes = map(lambda x: len(x), alternatives)

best = max(sizes)

for j in xrange(len(alternatives)):

if sizes[j] == best: scores[j] += 1

stationsa = map(lambda x: Similarity((result[-1][4], result[-1][5]), (x[0][4], x[0][5])), alternativ

Find best alternative for stations in the beginning

if i+1 < len(lines) and type(lines[i+1][0]) != type([]):

stationsz = map(lambda x: Similarity((x[-1][4], x[-1][5]), (lines[i+1][4], lines[i+1][5])), alte

Find best alternative for stations in the end

slopesa = map(lambda x: abs(alternatives[x][0][3]-result[-1][3]), xrange(len(alternatives)))

Find best alternative for slopes in the beginning

if i+1 < len(lines) and type(lines[i+1][0]) != type([]):

slopesz = map(lambda x: abs(alternatives[x][0][3]-lines[i+1][3]), xrange(len(alternatives)))

26

24. Chaos Communication Congress

Volldampf voraus! 45

Find best alternative for slopes in the end

Find the best alternative:

best = max(scores)

for j in xrange(len(alternatives)):

if scores[j] == best:

result.extend(alternatives[j])

break

Count slope deltas once more, for final line proposal

slope = result[0][2]

for i in result:

i[3] = i[2]-slope

slope = i[2]

return result

Function Break takes four consecutive points a, b, c, and d and returns number from range <
0.0; 1.0 >, the probability that line should be broken between points b and c, because they belong to
different lines. It takes six factors into consideration: difference in slopes between lines a-b and b-c, and
b-c and c-d, difference in time between following points, similarity of seen stations between points b and
c, and absolute changes of slope between local and global value.

Function returning probability of break

def Break(a, b, c, d, slope):

result = 0.0

SlopeDiff = 10.0

SlopeTrigger = 0.01

CounterDiff = 100

TimeDiff = datetime.timedelta(0, 120)

StationSimilarity = 0.5

if abs(c[3]) > SlopeTrigger:

if abs(c[3]) > abs(b[3])*SlopeDiff: result += 1.0

if abs(c[3]) > abs(d[3])*SlopeDiff: result += 1.0

Time is more intuitive that sequence counter

Also I do not have to think about line coefficient

if c[1] - b[1] > CounterDiff: result += 1.0

if c[0] - b[0] > TimeDiff: result += 1.0

if Similarity((b[4], b[5]), (c[4], c[5])) < StationSimilarity: result += 1.0

SlopeAB = float((b[0]-a[0]).seconds)/(b[1]-a[1])

SlopeBC = float((c[0]-b[0]).seconds)/(c[1]-b[1])

SlopeCD = float((d[0]-c[0]).seconds)/(d[1]-c[1])

Slopes should be similar to each other and to the main slope

if slope-1.0 <= SlopeAB and SlopeAB <= slope+1.0 and (SlopeBC < slope-1.0 or slope+1.0 < SlopeBC):

result += 1.0

if slope-1.0 <= SlopeCD and SlopeCD <= slope+1.0 and (SlopeBC < slope-1.0 or slope+1.0 < SlopeBC):

result += 1.0

return result/6.0

Main function FindIDs calls all previous functions and generates sequence. It decides to break line
if probability returned by function Break is more than 0.5, in such case of iteration of loop creates more
than one sequence.

Function creating all lines

def FindIDs(connection, sa, sz, id):

c.execute("""SELECT DISTINCT sequence FROM sputnik.ccc23 WHERE id IS NULL AND

sequence BETWEEN %s AND %s ORDER BY sequence""", (sa, sz))

for s in c.fetchall():

s0 = s[0]

c.execute("""SELECT DISTINCT time FROM sputnik.ccc23

WHERE id IS NULL AND sequence = %s""", (s0,))

for t in c.fetchall():

27

27. - 30. Dezember 2007, Berlin

46 24C3

Figure 26: Generated sequence; third set, number 3

t0 = t[0]

slope, count = Histogram(c, t0, s0, sa, sz)

if slope > 0.0 and count >= 8:

data = Fetch(c, t0, s0, slope, sa, sz)

lines = Lines(data)

line = Line(lines)

for i in xrange(len(line)):

skip = False

if len(line[i][4]) != len(line[i][5]):

print "Error in size of ", line[i]

skip = True

s = line[i][5][0]

for j in line[i][5]:

if j != s:

print "Error in strength of ", line[i]

skip = True

if skip:

break

UPDATE sputnik.sputnik SET id = %s WHERE id IS NULL AND

time = %s::TIMESTAMP WITH TIME ZONE AND sequence = %s::BIGINT

if i > 0 and i < len(line)-2:

b = Break(line[i-1], line[i], line[i+1], line[i+2], slope)

if b > 0.5:

id += 1

print "Break here, new id ", id, b

id += 1

return id

Figures 26 to 30 show some of sequences generated by improved algorithm.
Figure 27 shows sequence that is generated by all variants of global algorithm.
Figure 31 shows size of generated sequences calculated as number of occurrences of pair (time, counter

value); event if packet was seen by more than one reader, it was counted only once. In other words it
shows number of occurrences of tag, not how many times it was seen.

Figure 32 shows size of sequences calculated as number of tuples that are included into each sequence.
Program was run on different machine than previous ones. It was running 5634 minutes on 64 bit

AMD 3400+ with 1GB of RAM and one IDE HDD 7200RPM. It was stopped by FPU error in sigmoid
function for large values of counter. 10.6 million rows was used in generated sequences. Over 1600
sequences were made from more than 1000 points.

Because many of generated sequences were short, the next step should be joining of them. One
solution is to try to join existing sequences, another could be trying to extend sequences by points not

28

24. Chaos Communication Congress

Volldampf voraus! 47

Figure 27: Generated sequence; third set, number 38

Figure 28: Generated sequence; third set, number 117

Figure 29: Generated sequence; third set, number 188

29

27. - 30. Dezember 2007, Berlin

48 24C3

Figure 30: Generated sequence; third set, number 3618

Figure 31: Histogram of sizes of generated sequences for the third set

Figure 32: Histogram of sizes of generated sequences for the third set

30

24. Chaos Communication Congress

Volldampf voraus! 49

belonging to any sequence. But problem with joining is choosing which sequence to join with each
another. Which sequence from those shown in Figures 26, 27, 28. 29 should be joined to the one shown
in Figure 30? It could be different case of Break function. If none of the causes for break occurs, there
is possibility of join. Another possible solution is manual joining. Program could display few candidates
and let user choose which ones look best together. If manual joining is success, this approach could be
used to change generating algorithm and allow for manual choosing of alternative sub-sequences.

Knowledge gathered during analysing data and generating sequences leaves some doubts. I started
with assumption that each tag sends packet every 1.5s. This lead to setting coefficient range from 1s to
2s. Because this was not giving good results in local algorithms, and by observing scatter plots, global
algorithms were using range from 0.0 to 10.0, and later, basing on analysing source code of Sputnik
firmware, from 1.0 to 5.0, Source code of firmware contains two calls of sleep function. One sleeps for 2s,
and another for random period from 0s to 2s. This gives range of line slopes from 2s to 4s. But because
second sleep function parameter is random value, there should be no straight line! However scatter plots
reveal many of them. So either Sputnik data contains so many points that one can draw any line, or
function rand() returns not very random numbers. Basing on analysing packets generated by single tag,
second possibility is true.

Fragment of firmware of tag

void main (void)

{// get random seed

((unsigned char *) &seq)[0] = EEPROM_READ (4);

((unsigned char *) &seq)[1] = EEPROM_READ (5);

((unsigned char *) &seq)[2] = EEPROM_READ (6);

((unsigned char *) &seq)[3] = EEPROM_READ (7);

// increment code block after power cycle

((unsigned char *) &crc)[0] = EEPROM_READ (8);

((unsigned char *) &crc)[1] = EEPROM_READ (9);

store_codeblock (++crc);

seq ^= crc;

srand (crc16 ((unsigned char *) &seq, sizeof (seq)));

// increment code blocks to make sure that seq is higher or equal after battery change

seq = ((u_int32_t) crc) << 16;

i = 0;

while (1) {

// update code_block so on next power up the seq will be higher or equal

crc = seq >> 16;

if (crc == 0xFFFF) break;

if (crc == code_block) store_codeblock (++crc);

// encrypt my data

shuffle_tx_byteorder ();

xxtea_encode ();

shuffle_tx_byteorder ();

// send it away

nRFCMD_Macro ((unsigned char *) &g_MacroBeacon);

CONFIG_PIN_LED = 1; nRFCMD_Execute (); CONFIG_PIN_LED = 0;

// reset touch sensor pin

TRISA = CONFIG_CPU_TRISA & ~0x02; CONFIG_PIN_SENSOR = 0;

sleep_jiffies (0xFFFF);

CONFIG_PIN_SENSOR = 1; TRISA = CONFIG_CPU_TRISA;

// sleep a random time to avoid on-air collosions

sleep_jiffies (rand ());

i++;

}

}

No physical (or geometrical) model was taken into consideration during generating sequences. No
distance between stations or speed of movement was analysed. This could give better results in sequences,
by limiting point to only those that are in range to reach from previous point. On the other hand this
approach would require calculating position of each tag in every moment.

31

27. - 30. Dezember 2007, Berlin

50 24C3

5.3 Analysis

Following paragraphs describe potential approaches. They base on validity of generated sequences.
I did not yet performed any analysis of data using generated sequences, as recovering them was my
primary concern.

XML data set proves that it is possible to calculate position of tag. Tags send packets with different
signal strength to allow for estimation of distance from reader. This estimation bases on negative
knowledge. If reader is unable to read signal with small strength it means that tag is far away from
it. So having few packets it is possible to calculate minimal and maximal distance tag is from reader.
Power of signal was set so next level of power increases twice radius of range. This gives two spheres with
small and large radius; person is between them. When data from few readers is known, it is possible to
calculate common fragment of space where all those spheres intersect, and this is position of tag. But
this requires knowing exact positions of readers.

Human body decreases strength of signal. This decreases precision of estimating position of tag.
But maybe this could be used to calculate direction person has, assuming that tag is worn in the front.
Range would not be sphere, but two hemispheres, larger in the front and smaller in the back. This would
require performing more calculations (two times for each reader), but as there is no situation when all
readers see one tag, it would not be impossible. Direction could be proven when person moves in this
direction, again with assumption that person walks forwards, not backwards.

Simple analysis is calculating time of entering BCC and leaving it. Most people leave Center for the
night, but some stay. Also when one sequence disappears and another one appears in the same place it
means that someone is playing with battery and reset tag.

The most interesting analysis is looking for connections and similarities between attendees. This can
be done by looking for people that attended similar talks. Those people may not even know each other
but have common interests.

Another research area is looking for friends. Friends can be defined as people that stay together;
they tend to be together not only during talks, but also and especially during breaks. If two people are
close during most breaks, they are close friends. If they are close for some times, and not close for other
moments, they may be colleagues. Or they may just stay in the same queue for pizza. However here the
most important is relative position (distance between people), not exact position of tags.

This data set leves many conclusions to be drawn.

32

24. Chaos Communication Congress

Volldampf voraus! 51

27. - 30. Dezember 2007, Berlin

52 24C3

AnonAccess
Ein anonymes Zugangskontrollsystem

lecture

Hacking

Tag 1 21:45

Saal 2

de

Daniel Otte, Sören Heisrath

http://www.das-labor.org/wiki/AnonAccess AnonAccess im Labor wiki

AnonAccess ist ein elektronisches System, welches anonymen Zugang nicht nur zu
Hackerspaces ermöglicht.

Mit Hilfe kryptographischer Verfahren kann das Mikrocontroller-basierende System verblüffend
einfach sicheren und anonymen Zugang kontrollieren.Es wird das Zusammenspiel verschiedener
Primitiven unter Berücksichtigung der Limitierungen eingebetteter Systeme gezeigt.
Angriffsszenarien und Anforderungen an derartige Systeme stellen einen weiteren
Beobachtungsgegenstand da.Gezeigt wird das komplette System von der ICC-Speicherkarte über
die gesicherte Kommunikation bis zur verschlüsselten Datenbank.

24. Chaos Communication Congress

Volldampf voraus! 53

AnonAccess
das Labor

http://www.das-labor.org

Daniel Otte
daniel.otte@ruhr-uni-bochum.de

Sören Heisrath
sh@3dots.de

December 3, 2007

Abstract

This paper gives an overview of the AnonAccess-system, which tries
to provide access to users which may be known by name, pseudonym or a
shared pseudonym, to a given functionality (ex. open a door). The shared
pseudonym access feature is tried to be extended and implemented in such
a way that it can be claimed to be anonymous.

1

27. - 30. Dezember 2007, Berlin

54 24C3

1 Notations and conventions

a ← b a is asigned the value of b
a ⊕ b a xor b
a ∧ b a bit wise and b
a ∨ b a bit wise or b
a ‖ b concatenation of the bit strings a and b
a(base) the constant a is given in base base notation, if not specified the

base is 10
H(a) is the value of the hash function SHA-256 of message a
HMACkey(a) is the value of the HMAC-SHA256 MAC function of message a

and key key
bit a bit is the basic unit of information; it can only have one of two

values, which we consider to be 1 and 0
byte a byte is considered to be a group of eight bits throughout this

document
Ki, Mi, Gi prefixes to units, specifying a multiple of 210 = 1, 024, 220 =

1048, 576 and 230 = 1, 073, 741, 824; see [1] for reasons
K, M, G prefixes to units, specifying a multiple of 103 = 1, 000, 106 =

1, 000, 000 and 109 = 1, 000, 000, 000

2 Cryptographic algorithms used

We use the following cryptographic primitives:

• SHA-256 hash function as specified in [2]

• HMAC-SHA256 MAC function as specified in [3]

• Shabea with 16 rounds as data encryption algorithm as specified in ap-
pendix B

• a PRNG as specified in appendix A

3 Components

The AnonAccess system is divided in Terminal-Unit and Master-Unit, addi-
tionaly there is a chip-card for each user, which stores the user’s authentication
data.

3.1 Chip-Card

We use simple memory cards with I2C-Bus[4] and form factor ID-1 as specified
in [5][6]. They are quite cheap (less then 1e per card) and not secure. Their
contents might easily be read or modified, so everyone can read and check what
we write on his/her card.

The card contains a so called AuthBlock embedded in an ASN.1-BER[7]
octal-string object. The AuthBlock has the following structure:

2

24. Chaos Communication Congress

Volldampf voraus! 55

name size description
UID 2 bytes index to the TicketDB
ticket 32 bytes ticket containing encrypted time-stamp
rkey 32 bytes random key for rID decryption
rID 32 bytes encrypted user pseudonym
HMAC 32 bytes HMACabsign key(UID ‖ ticket ‖ rkey ‖ rID)

3.2 Terminal-Unit

The Terminal-Unit handles user inputs, displays information and reads and
writes the user’s card. It is equipped with keypad, display, card reader and a
hardware random number generator. It’power is supplied by the Master-Unit
and it should therefore not be reset even in the case of power failure.

3.3 Master-Unit

The Master-Unit keeps the databases, does the authentication and executes the
secured action (ex. opens a door).

3.4 Power supply

The power supply is designed to power the Terminal-Unit and the Master-Unit.
It uses an accumulator to work as uninterruptible power supply, so that about 60
hours of operation without external power supply should be possible. Therefore
under normal circumstances a reset due to a power failure should not happen.

3.5 Real time clock (RTC)

The real time clock is implemented in software by using one of the microcon-
troller’s timers. A timer interrupt function increments a 64bit value each mil-
lisecond (this counter will wrap around in about 584.542.046 years, which should
be quite enough for us). Additionally the counter’s value is periodically1 written
to the microcontroller’s EEPROM and read back after reset. On reset we also
add the value 3FFFFF(16) to the counter to avoid having the same timestamp
for more than one time.

The backup storage is implemented in a ring buffer structure with an addi-
tional index byte. The index byte indicates which cell of the ring buffer is to be
used. After writing a value to a cell it is read back and checked. If the check
fails the index byte is incremented by one and the next cell is used. The EEP-
ROM is specified to be written 100,000 times so one cell may work for 116,508.4
hours which is about 13.29 years. So with a ring buffer of 20 cells, we should
be able to operate for about 265.82 years which should be sufficient for most
applications (if not the ring buffer could be easily made even larger).

It should be known that the timer value does not necessarily correspond to
a linear continuous time line or human time, although the time is monotonic
increasing.

1the value is backed up every 3FFFFF(16) milliseconds which is about every 1.165 hours

3

27. - 30. Dezember 2007, Berlin

56 24C3

3.6 Microcontroller

We use microcontrollers from the ATmega family from Atmel[13]for both units.
They are relatively cheap and support protection of the internal memories (flash
and EEPROM) from being read through their lock-bit feature. There also
is a toolchain including GCCs[16] C-compiler and a libc implementation[17]
available for these 8 bit microcontrollers which eases the writing of the software.

The Master-Unit uses an ATmega644[14] in DIL-Package with 64KiB of
program flash, 4KiB of internal SRAM and 2KiB of internal EEPROM (100,000
rewrite cycles guaranteed).

The Terminal-Unit uses an ATmega32[15] in DIL-Package with 32KiB of
program flash, 2KiB of internal SRAM and 1KiB of internal EEPROM (100,000
rewrite cycles guaranteed).

3.7 Random number generator (RNG)

This circuit utilises the randomness of the tran-
sistor diode’s breakdown current to generate ran-
dom voltages in the range from 0 to 5 volts. While
this is quite random it does not need to be cryp-
tographically secure, because the RNGs output is
used only as input for the cryptographically secure
PRNG.

schematic of the hardware
random generator

3.8 Pseudo-random number generator (PRNG)

The PRNG is based on the SHA-256 hash function and is specified in appendix
A. It has two main functions:

• AddEntropy: this function adds data to the entropy pool, the input can
be of arbitrary bit length

• GetRandomBlock: this function fills a 32 byte block of memory with a
randomised bit string

Another function (GetRandomByte) uses a buffer and the GetRandomBlock
function and returns a random byte. The PRNG is periodically filled with
entropy from the hardware RNG using the AddEntropy function.

3.9 Secure serial port (QPort-tiny)

QPort-tiny[11] is a software stack which offers a secure communication channel
over an insecure serial line. For that purpose it uses a pre-shared secret key
to agree on a set of secret symmetric keys, which are then used for encryption.
HMAC-SHA256 is used for session key generation, and XTEA[12] is used in
OFB and CFB mode for encryption.

3.10 External serial EEPROM

The external serial EEPROM is used to keep the ticket databases and the flag-
modify database, and can be used for key-storage in the migration process.

4

24. Chaos Communication Congress

Volldampf voraus! 57

We use standard I2C[4] EEPROMs with 512KiBit or 1MiBit (24xx512[8] or
24xx1025[9]) from Microchip[10]. It is possible to extend the storage capabilities
by using multiple EEPROMs. That makes it possible to have up to 4MiBit or
512KiBytes of storage space which normally allows more than 10,000 users.

All contents of the EEPROM are encrypted (except the keymigration-area).
Shabea-16 is used to encrypt the content. We therefore divide the EEPROM
space into 32 byte blocks which are encrypted separately. Every block is en-
crypted with an individual key which is the result of concatenation of the ”main-
key”(eepromcrypt key) and the block address. So we are protected from most
attacks against mass storage encryption (ex. watermarking).

3.11 Ticket-Database (TicketDB)

This database is used to store a HMAC of the user’s ticket, her/his permissions,
and some statistics about the whole system. The first element in the database
is the header followed by the entries for the users.
Header structure:
name size description
ID 10 bytes set to the ASCII string ”AnonAccess”
majversion 1 byte major version; set to 1
minversion 1 byte minor version; set to 0
headersize 1 byte specifies the size of the header
stat 10 bytes statistics
reserved 8 bytes reserved field for future extensions and for alignment;

set to 0
The statistics field has the following structure:

name size description
max users 2 bytes maximum number of users
users 2 bytes actually active user
admins 2 bytes actually active admins
locked users 2 bytes number of locked users
locked admins 2 bytes number of locked admins

The following space of the TicketDB is filled with user entries which have
the following structure:
name size description
flags 1 byte the flags associated with the user
nickname 7 bytes the nickname if the user decided to be known by name
ticketmac 32 bytes HMAC from users ticket

Where the flag field has the following structure:
name size description
exists 1 bit indicates if this entry is used (1: in use; 0: free)
admin 1 bit set if user has admin privileges, cleared otherwise
locked 1 bit set if user is locked; cleared otherwise
notify lostadmin 1 bit set if user has to be notified about lost admin privileges
anonymous 1 bit set if the user did not specify user name to be stored
reserved 3 bit reserved, should be set to 0

5

27. - 30. Dezember 2007, Berlin

58 24C3

3.12 FlagModifying-Database (FLMDB)

The flag-modifying-Database keeps entries which specify how a given user ac-
count should be modified.
name size description
active 1 byte set to 1 if this entry is active; set to 0 otherwise
permanent 1 byte set to 1 if this entry should not be removed if applied;

set to 0 otherwise
last 1 bytes if set to 1 this is the last entry to check; set to 0

otherwise
setflags 1 byte specifies which bits have to be set in the userflags
clearflags 1 byte specifies which bits have to be cleared in the userflags
reserved 3 byte reserved; set to 0
timestamp 8 bytes timestamp of the creation of this entry
hnick 32 bytes HMAC of the user pseudonym

3.13 Key-Database (Key-DB)

This database stores all the cryptographic keys used in the system.
name size description
ticket key 256 bit used to generate the HMAC from the ticket which is

stored in TicketDB
absign key 256 bit used to generate the HMAC in the AuthBlock
rid key 256 bit used to encrypt the user pseudonym
nick key 256 bit used to generate the HMAC from the user’s nick-

name giving the user pseudonym
timestamp key 256 bit used to generate a new ticket by encrypting a 24 byte

random string and a 8 byte timestamp
eepromcrypt key 256 bit used for encrypting the external EEPROM’s content

4 Being known by name or shared pseudonym

AnonAccess allows three ways of being known:

• being known by name

• being known by pseudonym

• being known by a shared pseudonym

4.1 Being known by name

If the user selects to be known by name the nickname is stored in the TicketDB
in a way that is available in plaintext to the Master-Unit. It can be searched for
and it can be read by an administrator. This allows immediate manipulation of
the user’s flags.

4.2 Being known by pseudonym

In every mode the user enters his/her nickname at card creation time at the
Terminal-Unit, and the Master-Unit generates a HMAC (with a special key, the

6

24. Chaos Communication Congress

Volldampf voraus! 59

nickkey) from this nickname. This HMAC is referred to as user pseudonym in
this document. It is neither possible for the Master-Unit nor the Terminal-Unit
to compute the user’s nickname from this pseudonym. The user pseudonym is
not stored in the Master-Unit neither in the Terminal-Unit, it is stored only in
double encrypted form in the AuthBlock on the users card.

This pseudonym is used to apply modifications to a given account. A mod-
ification is done by adding an entry to the FLMDB. As this requires the user
pseudonym, the nickname of the associated user must be known. Also the mod-
ifications can only be applied when the user processes the user authentication
process.

4.3 Sharing a pseudonym

It is also possible to have multiple users sharing the same user pseudonym.
Therefore they simply have to enter the same nickname. It is recommended to
use the name of colors for such groups.

To apply modifications to an account in such a group, the modification has
to be applied to all members of the group. An exception is the case where the
card related to this account is available. In this case the UID from the card can
be used to modify the flags in the TicketDB directly.

5 Usage

This section describes the AnonAccess system from the user’s point of view.

5.1 Actions and commands

5.1.1 mainopen

Execute a special action (ex. open a door).

5.1.2 mainclose

Execute a special action (ex. closing/locking a door).

5.1.3 adduser

Add a user to the system. A user nickname must be specified. A user is added
by generating a new valid AuthBlock which is written to an empty card, and by
writing corresponding information to the TicketDB.

5.1.4 remuser

Remove a user from the system. A user nickname must be specified. If the
nickname is stored in the TicketDB the entry in the TicketDB is immediately
deleted which includes setting the exists-flag to 0. If the nickname is not stored
in TicketDB a new entry in FLMDB is generated which leads to removal of the
account when a AuthBlock is processed whichs user pseudonym matches the
generated user pseudonym.

7

27. - 30. Dezember 2007, Berlin

60 24C3

Table 1: example for minimum permission levels for different tasks
action requirements
mainopen 1 user
mainclose 1 user
adduser 1 admin
remuser 1 admin
lockuser 1 admin
unlockuser 1 admin
addadmin 2 admins
remadmin 2 admins
keymigrate 3 admins

5.1.5 lockuser

Same as removing a user but instead of deleting the entry only the lock bit is
set, which will cause the system to not accept the card as valid user card.

5.1.6 unlockuser

Same as removing a user, but instead of deleting the entry, an eventually set
lock bit will be cleared.

5.1.7 addadmin

Same as removing a user, but instead of deleting the entry, the admin bit will
be set, granting admin privileges to the user.

5.1.8 remadmin

Same as removing a user, but instead of deleting the entry, an eventually set
admin bit will be cleared, so the user will not have admin privileges any more.

5.1.9 keymigrate

Initiate a key-migration, which will write the internal secret keys to the external
serial EEPROM. This might not be implemented for security reasons.

5.2 Privileges

The system differentiates between ”normal” (non-admin) users and admin users.
To execute a given task in a session, special authorisation requirements must be
met. These requirements are given as the number of users and admins which
have to participate in the session. It might be decided to restrict admin priv-
ileges to users which are known by nickname. The given example of minimum
permission levels assumes that admin privileges are restricted to users that are
known by nickname.

6 Ideal run

1. User inserts card in Terminal-Unit

8

24. Chaos Communication Congress

Volldampf voraus! 61

2. Terminal-Unit reads AuthBlock from card and transmits it in addAuth-
Packet to Master-Unit

3. Master-Unit checks UID to be in range

4. Master-Unit checks ticket against the HMAC in TicketDB at UID

5. Master-Unit loads userflags from TicketDB

6. Master-Unit decrypts ticket and checks timestamp to be in range

7. Master-Unit decrypts rID (decpseudokey(decrkey
(rID))) to get users pseudonym

8. Master-Unit searches in FLMDB for entries matching users pseudonym;
for every matching entry it does:

(a) modify users flags as indicated by the setflags and clearflags fields

(b) delete the entry if the permanent-flag is not set

9. Master-Unit deletes TicketDB -entry

10. Master-Unit generates a new UID which points to an entry in TicketDB

11. Master-Unit generates a new ticket with a new timestamp

12. Master-Unit writes new ticket at UID in TicketDB

13. Master-Unit generates new rkey

14. Master-Unit generates new rID= encrid key(encrkey
(userspseudonym))

15. Master-Unit transmits new AuthBlock in addAuthAck -Packet to Terminal-
Unit

16. Terminal-Unit writes new AuthBlock onto card

7 Attacks and trusted components

This section tries to give an overview of the trust level of components and
thereby an overview of the trust level of a complete implementation of AnonAc-
cess.

7.1 Security goals

• access should only be granted to users who have a valid card whichs infor-
mation and related information in the database state, that access should
be granted to this user.

• no valuable information should be retrievable from the card’s contents

• no valuable information should be retrievable by an unauthorised user
from the AnonAccess system

• no information about the presence of a user who is not known by nickname
should be available, even to an user with admin privileges

9

27. - 30. Dezember 2007, Berlin

62 24C3

7.2 Trusted components

We consider a component to be a trusted component if the compromisation of
this component leads to compromisation of at least one of the former declared
security goals.

7.2.1 Terminal-Unit

The Terminal-Unit is considered trusted, especially the connection between the
microcontroller and the card must be protected.

7.2.2 Master-Unit

The Master-Unit is considered trusted, especially the serial bus between the
microcontroller and the external serial EEPROM must be protected. Although
the external EEPROM’s content is encrypted, an attacker might gather usefull
information from the addresses which are accessed.

A The PRNG

The PRNG utilises SHA-256 as hash function. The entropy pool is 64 bytes
(512 bits) large, which is the block size of SHA-256. We specify two algorithms
which implement the functionality of the PRNG, one to add entropy to the
entropy pool and one to get a block (32 bytes) of random data.

Algorithm 1 Add some data to the entropy pool
Require: pool = pool0 ‖ pool1 where pool0 and pool1 are both 32 bytes large
Require: data of arbitrary length
Require: offset which may be 0 or 1

temp ← H(pool ‖ data)
pooloffset ← pooloffset ⊕ temp
offset ← offset ⊕ 1

Algorithm 2 Get a block of random data from the entropy pool
Require: pool = pool0 ‖ pool1 where pool0 and pool1 are both 32 bytes large
Require: offset which may be 0 or 1

temp ← H(pool)
pooloffset ← pooloffset ⊕ temp
offset ← offset ⊕ 1
temp[temp[0] ∧ 31] ← temp[temp[0] ∧ 31] + 1
OUTPUT ← H(temp)

B the Shabea-Cipher

Shabea (SHA based encryption algorithm) is a SHA-256 based Feistel-Cipher.
It was designed to securely encrypt data where a SHA-256 implementation is
available. It was important to have a small (in program space and memory

10

24. Chaos Communication Congress

Volldampf voraus! 63

Figure 1: schematic of the PRNG

requirement) and nevertheless secure symmetric cipher, in the case that a SHA-
256 implementation is available.

Algorithm 3 Encryption with Shabea
Require: INPUT = L0 ‖ R0 where L0 and R0 are both 16 bytes large
Require: 4 ≤ rounds ≤ 255
Require: key which length (in bits) is keylength of any size

for i = 0 to rounds do
Li+1 ← Ri

Ri+1 ← Li ⊕ H(key ‖ 0 ‖ i ‖ Ri)
end for
OUTPUT = Li+1 ‖ Ri+1

Algorithm 4 Decryption with Shabea
Require: INPUT = Lrounds ‖ Rrounds where Lrounds and Rrounds are both

16 bytes large
Require: 4 ≤ rounds ≤ 255
Require: key which length (in bits) is keylength of any size

for i = rounds + 1 downto 1 do
Ri−1 ← Li

Li−1 ← Ri ⊕ H(key ‖ 0 ‖ i ‖ Li)
end for
OUTPUT = L0 ‖ R0

11

27. - 30. Dezember 2007, Berlin

64 24C3

References

[1] When is a kilobyte a kibibyte? And an MB an MiB? (http://www.iec.
ch/zone/si/si_bytes.htm)

[2] FIPS 180-2: Secure Hash Standard (SHS) (http://csrc.nist.gov/
publications/fips/fips180-2/fips180-2withchangenotice.pdf)

[3] RFC 2104: HMAC: Keyed-Hashing for Message Authentication

[4] The I2C-Bus Specification, Version 2.1, January 2000, original spec-
ification from NXP Semiconductors (http://www.nxp.com/acrobat_
download/literature/9398/39340011.pdf)

[5] ISO/IEC 7816-1:1998 Identification cards – Integrated circuit(s) cards
with contacts – Part 1: Physical characteristics

[6] ISO/IEC 7816-2:1999 Identification cards – Integrated circuit cards – Part
2: Cards with contacts – Dimensions and location of the contacts

[7] ITU-T Rec. X.690: Information technology ? Abstract Syntax Nota-
tion One (ASN.1): Specification of basic notation (http://www.itu.int/
ITU-T/studygroups/com17/languages/X.680-0207.pdf)

[8] 24AA512/24LC512/24FC512 1024K I2C CMOS Serial EEPROM,
datasheet by Microchip (http://ww1.microchip.com/downloads/en/
DeviceDoc/21754H.pdf)

[9] 24AA1025/24LC1025/24FC1025 1024K I2C CMOS Serial EEPROM,
datasheet by Microchip (http://ww1.microchip.com/downloads/en/
DeviceDoc/21941E.pdf)

[10] The Microchip Cooperation web presence (http://www.microchip.com)

[11] QPort-tiny specification, Daniel Otte (http://nerilex.3dots.de/
qport-tiny.pdf).

[12] Tea extensions, Roger M. Needham and David J. Wheeler, (Notes October
1996, Revised March 1997, Corrected October 1997) (http://www.cix.
co.uk/~klockstone/xtea.pdf)

[13] The Atmel Cooperation web presence (http://www.atmel.com)

[14] ATmega644 Preliminary (revision M, updated 08/07) (http://www.
atmel.com/dyn/resources/prod_documents/doc2593.pdf)

[15] ATmega32(L) (revision K, updated 08/07) (http://www.atmel.com/
dyn/resources/prod_documents/doc2503.pdf)

[16] GCC, the GNU Compiler Collection (http://gcc.gnu.org)

[17] AVR Libc Home Page (http://www.nongnu.org/avr-libc/)

12

24. Chaos Communication Congress

Volldampf voraus! 65

27. - 30. Dezember 2007, Berlin

66 24C3

Dining Cryptographers, The Protocol
Even slower than Tor and JAP together!

lecture

Science

2007-12-30 14:00

Saal 3

en

Immanuel Scholz

http://www.eigenheimstrasse.de/imi/dc DC Network Client (Java WebStart)
http://www.eigenheimstrasse.de/svn/dc/ Source Code to the DC Network Client
http://www.eigenheimstrasse.de/svn/dc/doc/dcnetwork.pdf Slides

Imi gives an introduction into the idea behind DC networks, how and why they work.
With demonstration!

Back in 1988, David Chaum proposed a protocol for perfect untracable communication. And it
was completly different to the (former invented) Mix Cascades. While the Mixes got all the press
(heard of "Tor" and "JAP"? Told you!), the idea of DC networks were silently ignored by the
majority of the community.This talk is to show how DC networks work, why they are secure and
presents an implementation.

24. Chaos Communication Congress

Volldampf voraus! 67

0

kab kac

H T H +H = T H +T = H T +T =
T H = T =

kbc

kab −kab

kab +
kac +malice −kab + kbc +mbob

−kac − kbc + mcharlie

0

kab + kac + malice − kab + kbc + mbob − kac − kbc +
mcharlie

= malice + mbob + mcharlie

27. - 30. Dezember 2007, Berlin

68 24C3

kab +kac +malice

−kab +kbc +mbob −kac −kbc +mcharlie

kab kbc

mbob malice

mcharlie

−kac −
kbc +mcharlie +kbc = −kac +mcharlie −kac

mcharlie −kac

w
2w

w

2w
w

•
•
•
•

24. Chaos Communication Congress

Volldampf voraus! 69

27. - 30. Dezember 2007, Berlin

70 24C3

p g xalice mod
p gxalice mod p

(gxbob)xalice = gxalicexbob

(gxalice)xbob = gxalicexbob

kab

signbob(kab)
signalice(kab)

n

n
n−1

r1 rn−1 n−1
k − ∑

ri

0

lab

0

24. Chaos Communication Congress

Volldampf voraus! 71

•

• x

27. - 30. Dezember 2007, Berlin

72 24C3

Grundlagen der sicheren Programmierung
Typische Sicherheitslücken

lecture

Hacking

2007-12-29 11:30

Saal 3

de

Tonnerre Lombard

Dieser Vortrag bietet eine Übersicht über einige Dinge, welche man im Kopf behalten
sollte, wenn man Software schreibt - vorausgesetzt, diese soll nachher nur von der Person
benutzt werden, die sie auch betreibt. Die theoretischen Aspekte der Sicherheit werden
mit Codebeispielen untermalt.

In der Programmierung gilt Sicherheit oft als ein von Schamanen betriebenes und mit
Zauberkraft gesichertes Geheimnis. Viele Leute predigen verschiedene Wege, sicheren Code zu
schreiben. Die meisten dieser Wege laufen auf die Verwendung bestimmter Programmiersprachen
hinaus.Im Laufe des Vortrages wird allerdings gezeigt, dass nur Sachkenntnis über die potentiell
auftauchenden Probleme der Schlüssel zu einem sicheren Programm ist. Dabei richtet sich der
Vortrag hauptsächlich an Leute, die sich nicht in ihrem alltäglichen Leben mit dem Finden von
Sicherheitslücken in Software beschäftigen.

24. Chaos Communication Congress

Volldampf voraus! 73

Sicherheitsprobleme in der Programmierung

Tonnerre Lombard

18. Oktober 2007

1 Mythen der Sicheren Programmiersprache

In der Programmierung gilt Sicherheit oft als ein von Schamanen betriebenes
und mit Zauberkraft gesichertes Geheimnis. Viele Leute predigen verschiedene
Wege, sicheren Code zu schreiben. Die meisten dieser Wege laufen auf die ver-
wendung bestimmter Programmiersprachen hinaus. Im Zweifelsfall laufen die
Argumentationen jedoch in’s Leere. Einige dieser leeren Versprechungen werden
im ersten Teil genauer beleuchtet und im Laufe des Textes widerlegt. Dies um-
fasst die Verwendung von Skriptsprachen, alternativen Bytecodes sowie Hoch-
und Niedersprachen.

2 Arten von möglichen Fehlern

Wie nicht anders zu erwarten, gibt es in der komplexen Welt der Programmie-
rung viele verschiedene Dinge, welche man falsch machen kann.

2.1 Buffer Overflow

Ein Buffer Overflow ist eine sehr grundlegende Art von Fehlern, welche aus der
Art und Weise resultiert, wie die Daten ausgeführter Programme im Speicher
angeordnet werden. Es gibt dabei praktisch zwei verschiedene Arten von Buffer
Overflows: Stack Overflows und Heap Overflows. Beiden ist gemeinsam, dass
über den vorgesehenen Speicherbereich hinaus geschrieben werden kann, wo-
durch zur Programmausführung wichtige Daten manipuliert werden. Auf diese
Art kann die Ausführung beliebigen Codes erzwungen werden.

2.2 Synchronisierungsprobleme

Wann immer Code parallel ausgeführt wird, welcher auf dieselben Dinge zu-
greift, kann es zu Problemen kommen. Dies fängt beim Sperren von geöffneten
Dateien an und geht über den parallelen Zugriff auf Daten zwischen Threads

1

27. - 30. Dezember 2007, Berlin

74 24C3

bis hin zur Signalbehandlung. Wann immer der Programmablauf keinen roten
Faden darstellt, ist eine Form von Synchronisierung vonnöten.

2.2.1 Fehlende Parallelisierung bei geteilten Zugriffen

Greifen mehrere Prozesse auf dieselbe Ressource zu, können unter Umständen
verschiedene sicherheitskritische Situationen entstehen, welche durch Angreifer
ausnutzbar sein könnten. Voraussetzung dazu ist lediglich fehlende Synchroni-
sierung der Prozesse.

Ebenfalls in diese Kategorie fallen Angriffe, bei denen ein Prozess Objekte
mit den falschen Berechtigungen erstellt und diese nachträglich ändert – und
somit einen Zeitraum schafft, während dem sich andere prozesse Rechte an dem
Objekt sichern können.

2.2.2 Fehlende Threadsynchronisation

In der Synchronisation zwischen Threads ist das Potential für Probleme noch viel
grösser, da sie nicht über getrennte Speicherbereiche verfügen. Die Verwendung
reentranter Funktionen spielt hier eine grosse Rolle.

2.2.3 Signalbehandlungsangriffe

Eine weitere, oft unterschätzte Form asynchroner Programmausführung sind Si-
gnale, und auch diese können unter Umständen zur Codeausführung verwendet
werden.

2.3 Formatstringangriffe

Mit Formatstringangriffen kann in den meisten Fällen erst einmal nur Speicher
gelesen werden, aber auch dieser kann bereits interessante Informationen ent-
halten.

2.4 Injectionangriffe

Wann immer mehrere Sprachen ineinander eingebettet werden, ist es ratsam,
dafür zu sorgen, dass Elemente der inneren Sprache nicht mit Elementen der
äusseren Sprache gemischt werden. Dieses Problem ergibt sich auch und vor
Allem bei benutzerkontrollierten Eingaben in Applikationen, welche in der Aus-
gabe der Applikation oder in erzeugten Befehlen repräsentiert werden.

2.4.1 Formatinjektion

Formatinjektionen sind die älteste Art von Injection-Sicherheitslücken. Hierbei
werden die Begrenzungszeichen eines Formates in einem eingefügten, nicht ge-

2

24. Chaos Communication Congress

Volldampf voraus! 75

prüften Teil verwendet, so dass zusätzliche Daten eingefügt werden. In einem
Beispiel wird ein Rootaccount angelegt, wobei der Anlegende lediglich über Be-
nutzerrechte verfügt.

2.4.2 Cross Site Scripting (XSS)

Cross Site Scripting ist ebenfalls das Einbetten von Informationen in eine Spra-
che in die sie nicht hinein gehören, um JavaScript-Elemente auf Seiten einzu-
blenden, auf die sie nicht gehören, um Kontrolle über die Inhalte zu erlangen.

2.4.3 SQL injection

In diesem Teil wird die Natur der SQL-Injection-Sicherheitslücken erläutert,
inklusive Codebeispielen wie eine solche Sicherheitslücke zustande kommt.

2.5 Authentisierungs- und Verifikationsmängel

Eine ganz eigene Klasse von Fehlern liegt in der Logik der Applikation ver-
steckt. Oft werden hier Sicherheitsmerkmale vergessen oder nicht vollständig
ausgeführt, oder sie werden aus unsicheren Elementen zusammengesetzt.

2.5.1 Berechtigungsprobleme auf Objekte

Probleme mit den Berechtigungen auf Objekte, welche von mehreren Prozessen
gesehen werden können, sind immer wieder eine grosse Fehlerquelle – vor Allem,
da zum Beispiel die Benutzerrechte auf Dateien oft nicht nur vom entsprechen-
den Programm verwaltet werden. Was hierbei zu beachten ist und wie man mit
renitenten Benutzern umgeht, wird in diesem Kapitel erläutert.

2.5.2 Unauthentisierte Interfaces

In einigen wenigen Fällen besteht das Sicherheitsproblem darin, dass die Au-
thentisierung oder Autorisierung für ein Interface nicht geprüft wird. Dieser
Teil erwähnt den Fall allerdings bloss, da er mehr oder weniger selbsterklärend
sein sollte.

2.5.3 Sessiondiebstahl

Eine einfache Möglichkeit, an den Account einer anderen Person zu kommen,
sei es um Daten auszuspähen, die Person zu personifizieren, oder um deren
Berechtigungen zu missbrauchen, sind oft laufende Sitzungen der Person ein
Angriffsziel. Mit Codebeispielen wird darauf eingegangen, auf welchen Wegen
man eine Sitzung einer anderen Person übernehmen kann.

Mittels SQL-Injection

3

27. - 30. Dezember 2007, Berlin

76 24C3

Es gibt mehrere Methoden, SQL-Injection auszunutzen, um Zugriff auf frem-
de Accounts zu erhalten. Ein paar Beispiele werden im Code dargestellt.

Mittels XSS
Hierbei wird darauf eingegangen, wie man mittels Cross Site Scripting das

Session-Cookie einer Webseite entwenden kann.
Bei schlechtem Generator
Einige Fälle von Sessiondiebstahl sind auch einfach auf schlecht generierte

Cookies zurückzuführen. Es wird beleuchtet, welche Methoden zur Generierung
von Session-Cookies als sicher angenommen werden können und welche gar nicht
in Frage kommen.

2.5.4 Cross Site Request Forgery (CSRF)

Der modernste unter den modernen Angriffen nennt sich Cross Site Request
Forgery. Hierbei wird eine Aktion durch einen bereits angemeldeten Benutzer
von einer anderen Seite aus ausgelöst.

3 Spezielle Probleme mit 32-Bit-Code

Dieser letzte Teil des Vortrages behandelt einige Probleme, die nur speziell dann
auftreten, wenn Code auf 64-Bit-Prozessoren ausgeführt wird, welcher 32-Bit-
Spezifika aufweist.

4 Abschliessende Hinweise

Zuletzt werden noch einige Hinweise zur Architektur sicherer Systeme gegeben.
Dies reicht von erneuter Mahnung zum Prüfen gegen Buffer Overflows bis zum
Hinweis, wie SSL-Clientzertifikate die nervigen Cookieprobleme ein für alle mal
beseitigt werden können.

4

24. Chaos Communication Congress

Volldampf voraus! 77

27. - 30. Dezember 2007, Berlin

78 24C3

Hacking ideologies, part 2:
Open Source, a capitalist movement
Free Software, Free Drugs and an ethics of death

lecture

Society

2007-12-29 12:45

Saal 1

enTomislav Medak
Toni Prug
Marcell Mars

http://publication.nodel.org/The-Mirrors-Gonna-Steal-Your-Soul The Mirror's Gonna Steal Your Soul
http://rabelais.socialtools.net/FreeSoftware.ToniPrug.Aug2007.pdf Free Software

The Open Source initiative re-interpreted Free Software to include it into the neo-liberal
ideology and the capitalist economy - whose aims are contrary to the FS starting
axioms/freedoms. This platform will focus on ideological and political aspects of this. It will
also suggest FS recovery strategies.

Believe. "The World is Yours." (Ian Brown, 2007)
What is Re-interpretation of FS by Open Source ?In The Revenge of the Hackers, Eric Raymond
talks about Open Sourcegoals in clear terms: "In conventional marketing terms, our job wasto
re-brand the product, and build its reputation into one the corporate world would hasten to buy."
The move of the Open Source initiative to bring Free Softwarecloser to capitalism shows that:
a) there is a gap between the Free Software movement and capitalism;
b) without a significant institutional intervention and re-interpretation that gap can not be
overcome;
c) it is the founding documents (practice of Open Source doesn't differ), ethics that Richard
Stallman stands by so fiercely, that are the bite that capitalism can not subsume, swallow in its

24. Chaos Communication Congress

Volldampf voraus! 79

�������	�
��
������	����	��	����	�������	�	������
���	��������	
��������	
����������
�������������	�����������	�
���������������	�������	����������

���		�������� !�"��#��	�$��$������%�������������$���������������	�	�����#���������	�
�		$&''���������������	�������	'�������	
�������������(��))*�$��

++
������������	
����
��������
����	��������
���������
++

����,$�������������	��	�#����+��	��$��	�����������	
����	�����������	���	��	���
���+���������������������	�����$�	����	������-��+�
�������-���������	�����	�
	�������	��	�����.��-�'������-��������$��	���-�
������������������������
����$���	�������$��	�����	�����/	�
���������������	��������#�����	��	������

000000

�
����	��	�����������������	��	��	 !	����	������	"

/������1�#��������	���2��3�����4����1��-����	��3������	�,$���������
���������������	��-�&

5,�������������	���6�	���$��
�������$���������$�������	�������	�#�����
�	����	�$���
�	��$���	�#���	����	�$�����������
�++$���-�	���	�����
�
��	�	��-�������7�������#��	���7��������������������������	�����
��
������	�������		������	������/�����#��	������-��3�	����	��-������
8���
���	����+������	���$�����	�������������	����$�	�	������	������	��
���$���	��
�����
��������	���	������5

000000

����-�#�����	���,$�������������	��	�#��	����������������	
���
�������	����$�	����-����
��	��	&�

�����������	��	�	���	 ��#���	���	����	����#���	��������	��
	������
���$

������
�	���	�������������	����	�	�	��������	��#��	�������
���������+��	��$��	�	����	��	���$�������	�����#����-�9

�������	����	����������������-��	���$���	�������,$���������������7	���������
��������	�����	��	�1��������	���-����	���������������������	��	����
�������	�����	��	��	���$�	����-�������	������-�����
����
�����	��������������-�

000000

�%���

!	��
��	������������	 �����	
� !���&

2���7����-�����+��������	�.	+���3�$��$������&

��5�	�������:�	���������	������--�������	�����������	����	�����-��3�	
������������
�������3����#��	�������-������	���5�

�������/���;�������������������
������
����������5,$��������������	��
�������<�--���	�:�	����������	
���5��,71������

000000

'�
����
�	�����
������
	�	����	���	�
�������

=��3����������	����������	����������������	
����,$������������������
���	
����������	������
��������������	���-��	��$��������������	�������
	�������2���	'6����7��5;��	�	���5��	��-�5�$��+������5�
�������������

�	��	���5�����������������-5����3�����	���-����

27. - 30. Dezember 2007, Berlin

80 24C3

000000

����
��	��	(�
�����

%�����'>�:�3&�$���	���������	�$�����-��	�������	�����-$��-�����
#�	������,��	������	�������	�������8��	�#�����-���	��	���������	�������
���������
��	����-���-$���������	�	���	�-�����	������������

(�	�������.��	����������-����	�����������	��������	�����#�����������	��
���
������������	�3���$������/	����	����+����������	��������	������	�
�������	������$�����5$����������	��-��5�

��������	����������������	
����=����7�������$	����������-�����	�����������
$�����-��	��������-���������-��
�����������	�����$��	���$�	�������	��

��	��������������#�������������	���	�������>�:�3��5,��%�����5�

0000000

)����	��	�'�	*+�
���,

<�����
����	�����	��	�	�������$���������
��	�1��������	���-�������
�	�
�����������������#����	���8�����������	�	���;/��=���	����#�	���������
	�-��	����+����	��	���
�����������	
��������-�����	����
�	����
��	��������
���	������+������	��?

1��$��	����������$��	�	���$���	����������?��6��	���@���������	
�������	����

%�����&���	������������
��$�	������#��	�++��#��	�	��	�$��-$	�����
����	���'���������++�����$��������	���	��	������	�	�������������	��	�
�	��	�������������	��	��	�����	����	�#��������	���	����#��	�	��	
�����������

000000

(���
�-.�� /����	�-��������������	�	�������	
���&

,���-���	�����	�������-��	��	����	����$����������	������	��3��3��
�����
������������
��������	���������#���$�������A�	����-���������������	���
��		����	��	�
���

6�������������$��������������������������
����3�-�	����(.��-��+�6�	�	�����B���	�������

����	��	�-�3��-�	������-�	��?�,�����������	��
������������������.��-�	���������	�����

,64&���������	
��������������	�����	����$�����$�����������������-��
��������������������.��-���6�	��$����������������

��,&���������	
������--���	��������	����	��������$���$��	���$�	����
����������/	��$�����������	������������������������	�#��$�����	�����������	�B���

�	���-��7��	��	���$���	����#��	�C�������	����	��������	�������$����	���	��
����������	�	����$$���	�����	��	����		����	������	���-�#�-��	������������

,$��������������������	������������������-���������	��	����$���	��
���-��.��-�����������
��	������������������.����������-�������8��	�

24. Chaos Communication Congress

Volldampf voraus! 81

000000

012	���������	���
��
�	����������	���	������
����"
����������

���������������������������
�����
��

���-�D6E�-������	�&
5
��7	�$�����--���������#������
��������	���������	�#�	�?��/�����	����
�����#�������
������	��������������	����	�����<���	�#�	����������
����������	����	�������	������������������������	����������	������	��
�����	���/��$�����--���������#��	�������
��������������	��������#�	�#�
$�����-������	�����-��	�3���	���������#��	�����$�����������	���
���	���	�	����������	�����$�����-��5

<���������$$������	����	��	��������-������	�
������	�-����	�������	
	��	������-���$�����	�#�	���������������������	����	�������������	�
�����	���������������?�/	��������������������-����
��������&�������	�
����������������7��
��3�������
�������	���	�����������	������/��
�
�����
���
��	��������$	���������-���$�����	�#�	��	������������	���
����	��������	����+���������������������	��	���$�	����	�����	���	����
���	������#�����-��	��������#��	����	��-���	����������$��#�	��
���	�
������	��������-����(���������������#��$�����-��	�

000000

3� ��
�	� ��
�������	�	#�

	���!	�-����	��	���	
�!�	
				 													��	���	����������	
�!"

���-�D6E�-������	�&
54.	���	����-��������-������������$�����-�������	���	����	�����������
�	�������	���	�#����������	������	���	������������	����-���	�����	��

����	��	�	���$�����-���������������������������	����-���	����
���	�
	��	���-���	������#������-�	���$�����-�������	������������������	�
�������	�����	���	��	������-���������B�������������������	�����	���	����5

<��������������	��������������+�����$�	����	���#��	����
�������$�����	�����
���������	��������������������	�����#���$-��	������
�$�����	��	����
8��	�����������-��������	������	���������	�	�-��������������	������������

000000

435�.��
����	��
�!�	(��
��������!	6�����
���	7�����	��	5����

����	��
���$�����-��	���?�
%���������������$��-��������$�����-��	����#��	���$�
���	���	�$�	�����
A�	��	�������7	��������	�#������������������$��	��	��	�

D�#���	����7���������(/
��������������	������
����
�����������	�#���
����	�$���������	�-�����	����$���	��������#���-��	�������	�����	�����
���������	�������	���
������������-��������������$��	��	����(����
%�������5<��	���5��))*��

����$�����	������������������������
�	����.�-$��������������	
�������
����	��������-�������������	�#��
����$��������������$�����������
���
�	�	������������$����������������������������$��$������

������	����������	����
������
����	����������������	�����������	�����
	��������	������	���-�����	��$��#��	��	��
����#��	����3&�
��	����	��
�������������	
����	�������-����������������	
��
�����
��������	��
��������-�����������(/
��	����?��������-���
����3������
�������	������
��	�	������+����	����	�����������	��

27. - 30. Dezember 2007, Berlin

82 24C3

0000000

(�������	6��!������	'���	5����

2��3�����������������	��
��	��	����3�����������	���������������	�����

	���3��
�����������
��	��$���	����������-��	����<�$�	����	���
���-��	�
��-�	����������������
�����$$�����	��	����	�����������3����

��������������������$�������	���$��#��	���������������$���-��������.$����	���
������������	�����������������	���$�����-��	������$�	����	���
�

6����-�������	����������3��������������$$��	��������
��
��	��	��������$�����	��������	��	�����-���	�����
,���	��	�����
��-�����������(/
������-����������	�������������

000000

����	������	��	�	����
� ���
�	���
��������!	������
���	�����
	��������&

6��+���������-�����-��	���7���FF8��	��������	77�����	�����3���������		��
�����-���
�	���	��������������������������(��������������-������������	�

���$��������
�	���	�������������	��-������������	�����������������������

��������
���6�3�7���������FF8��	�����	77�
���	������	���--�������	�����$�	����	�����������#����

(���	�������
���!!"#����
���������������
#$����$���
�
�
%&'�
������
�������������
�����$
��$���((���	���-�����-������	�����������$���	���

,$���������������	�8��	�����#���$-��	�-�	������������	���������
-�#�-��	�	�������������-�#�-��	��������������	�3�����
�	����������	�
$�����-��	������$�	����	���������

(��	����$�����-���������	�������-��	��	�,$������������$���	����	��������-�	��
	�������������������������	
������	���-����5����7,$���������7�-�����
	���$���	�����	���������	
���5���	����-�3�����	�����$	�����	�����$���	������

������-$�����	
��
������	�	�-��	������	�,$���������&�

����������������
��������
������
��'

������������������#����&������������
����
������������� �����������
��
�����������&����������#
���������
�����
�
%������
$$��$�����

���������	����	�����-��	�3������
����$�������-$��������������
���	
��������,$������������������������������-����������	��-�&�
�
�+�����������$���	����������	���
����	�������-��������	���	����9
�
�+�	����	�����,�����		�����
���
�	���	��������.�-������	���������3������
���	���$���	������	��	����������		����	�������#���������������+���������	���

����������
�	����	������	�������������������������	���$���	�������,$���������
���$�	����������.�-����������������������++���3��	�����$�	����	�����������

�����3����	��	�����������	��������������	�������������$���	������$$����	�
����	��������--�	-��	���
����������	�������	������
��FF$���-�	��-77����
���	���$������	�����������$��	����FF8��	���		����	����������77�

24. Chaos Communication Congress

Volldampf voraus! 83

888888

����	����#���	�	����	5����"

/��
������	��������
�	��1��������	��	���-����	���$������������$�������������8��	��
���
99�����������	���	
����� ������	��	���	��
��	��
	���	�������%%��
������������
	���$��#�	�:�	����������������	���
���	������7��-$�	����7��$��#�	�:�	��������������
	���$����������	����	�	���$�GH+ �52�	�������
�-������5��))G���++�����7����

��������	������������
���������	����$��������$���������������������	�������	���$�����
����	���$��#�	������������������	������-���������	
���&

�+�����������-�	������	�����������������$��$���������
��	:��

�+�����������-�	���	������
�	��������
��3����������$	��			������
���������������
��	;���(������	��	������������$�������$���	�����
�������$	�����	�������������	������������	����������$�������	���������	����

�+�����������-�	�������	����	����$�������	�������������	������$�
��������$���	����������������$���������������������
��	���

�+�����������-�	���-$��#��	���������������������������-$��#�-��	�
����	��	���$����������	��	�	���
�������--���	��������	�������
��	<���
����(������	��	������������$�������$���	����������$	�����	������
����������	������������	����������$�������	���������	����

000000

����

!	&&&	�����!"	��4)	(3�46="

������-��	������$�	����-������	��$��$�������-�	������������3��
�
�������������-��������������������	��������	��	�-�8���	��������
��	��-�����#����	����$�����	�	�#������
����	�	�������#���������
��������-�������<�����	�����������	�����-��3�	����-�	�������	��	�#��	
-�8���	�����	���/�	����	�	�������	��������$ $�	��������/��#��	�-�8���	����
������$���	����$ $�����������������
�����������	�	��������	��
��$�	����	�$�����-��	�������������-�8���	����������
�������������
������	��	����
��	�-�8���	��
��	�?�

������-��	��������$�����	�	�#�����	�	��$��#��	�������-���#������
�
	��	�
������	����������������������������������$���	�������-�����	��
���-�8���	��+�	������������
�����	�����$���	�������������	���	����
	��������������$�	���

�������3��
�����$���	����������������	�������-����	�����	��+��������
	�������������	���3��������	�	�����
������	������	�����	��$���	����

��������	��������.$����������$ $�	����������������	�����B�����

/��-�������3������������'	�����	��
�����������������������������

��
��������������������������������$�����'��
�'�������'�����
������	���/��	�����
��
��������������
��	�$���	��������������-��
�	���	��������
��
��	��	��$��	��	�
��-��	������������
��	?
(�����
����
������	�

0000000

++
������������	
����
��������
����	��������
���������
++

�������	�
��
������	����	��	����	�������	�	������
���	��������
���������������	�������	����������
��������������������������	
����

27. - 30. Dezember 2007, Berlin

84 24C3

Inside the Mac OS X Kernel
Debunking Mac OS Myths

lecture

Hacking

2007-12-28 21:45

Saal 2

en

lucy

Many buzzwords are associated with Mac OS X: Mach kernel, microkernel, FreeBSD kernel,
C++, 64 bit, UNIX... and while all of these apply in some way, "XNU", the Mac OS X kernel is
neither Mach, nor FreeBSD-based, it's not a microkernel, it's not written in C++ and it's not
64 bit - but it is UNIX... but just since recently.

This talk intends to clear up the confusion by presenting details of the Mac OS X kernel
architecture, its components Mach, BSD and I/O-Kit, what's so different and special about this
design, and what the special strengths of it are.
The talk first illustrates the history behind BSD and Mach, how NEXT combined these
technologies in the 1980s, and how Apple extended them in the late 1990 after buying NEXT. It
then goes through the parts of the kernel: Mach, which does the typical kernel work like memory
management, scheduling and interprocess communication, BSD, which provides the POSIX-style
syscall interface, file systems and networking to user mode, and I/O-Kit, the driver infrastructure
written in C++. In the end, a short overview on how to extend the kernel with so-called KEXT will
be given, as well as an introduction on how to hack the (Open Source) kernel code itself.

24. Chaos Communication Congress

Volldampf voraus! 85

Many buzzwords are associated with Mac OS
X: Mach kernel, microkernel, FreeBSD kernel,
C++, 64 bit, UNIX... and while all of these ap-
ply in some way, “XNU”, the Mac OS X ker-
nel is neither Mach, nor FreeBSD-based, it's
not a microkernel, it's not written in C++ and
it's not 64 bit - but it is Open Source (with res-
ervations) and it's UNIX... but just since re-
cently.

This paper intends to clear up the confusion
by presenting details of the Mac OS X kernel
architecture, its components Mach, BSD and I/
O-Kit, what's so different and special about this
design, and what the special strengths of it are.

History
Unlike many other operating systems, the de-

sign of Mac OS X has never been strictly
planned and implemented from scratch, in-
stead, it is the result of code from very differ-
ent sources put together over the last decades.

Mac OS
Mac OS started its life in 1984 on the original

128KB Macintosh as a mouse-operated graphi-
cal operating system that, due to memory con-
straints, did not support multitasking. It wasn't
until 1988 that Mac OS supported a very sim-
ple form of cooperative multitasking (“Multi-
Finder”). In the mid-90s, Apple ended up hav-
ing a ten year old code base designed for a
single-tasking system on a Motorola 68000 that
now ran on PowerPC CPUs. Parts of the kernel
code ran in a 68K emulator, and it still did not
support memory protection. There was no way
to compete even with Windows 95, which is
why Apple started the Copland project in 1994
in order to design and implement a new and
modern operating system that would have the
Mac OS API and user interface - much like
Microsoft did with Windows NT. But although
Copland had been heavily advertised with de-
velopers, programming books had been pub-
lished and Betas had been given out, the pieces
of Copland never fit together, and the unbeara-
bly unstable operating system was scrapped in
1996.

Mac OS Successor
As Apple was in bitter need of a successor for

Mac OS, they decided to buy an operating sys-
tem and build Mac OS compatibility into it.
Despite negotiations with the company behind
BeOS, Apple finally decided to buy NEXT, the
company Steve Jobs had founded just after
having left Apple in 1985, and to convert
NEXTSTEP/OpenStep into the next Mac OS:
Mac OS X.

Mach
The NEXTSTEP operating system was heav-

ily based on Mach. Mach was an operating sys-
tem project at the Carnegie Mellon University
that was started in 1985 in response to the ever-
increasing complexity of the UNIX and BSD
kernels. As one of the first microkernels, it only
included code for memory management (ad-
dress spaces, tasks), scheduling (threads; a
concept unknown to UNIX at that time) and
inter-process communication (IPC) - all other
functionality typically found in an operating
system kernel, like filesystems, networking,
security and device drivers, had to be imple-
mented in so-called “servers” in user space.
This could be a very big plus for reliability,
since a crash in a driver didn't necessarily bring
the system down, as well as maintainability,
since it imposed strict rules on the interface
between the core kernel functionality and the
userland servers. Unlike in UNIX, operating
system components couldn't just call each
other arbitrarily (“The big mess” - Tanen-
baum). Another advantage of a microkernel
like Mach is the possibility to have several per-
sonalities, each of which is a set of userspace
servers. This way, a Mach-based system could,
for example, run UNIX and Windows applica-
tions at the same time. Having a minimal piece
of code running in privileged mode that ab-
stracts the hardware and allows different oper-
ating systems to run on top of it is basically the
same approach implemented by virtualization
today. But the typical configuration of a Mach
operating system was to have a single BSD
server in user mode, i.e. the majority of the

Lucy <whoislucy(at)gmail.com>

Inside the Mac OS X Kernel
Debunking Mac OS Myths
24th Chaos Communication Congress 24C3, Berlin 2007

27. - 30. Dezember 2007, Berlin

86 24C3

BSD kernel with memory management and
scheduling stripped out, and process manage-
ment built on top of Mach tasks.

The problem with the Mach design was that
the kernel was slower than a traditional mono-
lithic kernel because of the extra kernel/user
context switches when a server communicated
with the kernel or servers communicated with
each other. On a monolithic kernel, these were
just simple function calls. The simplest solu-
tion for this problem is “co-location”: The per-
sonality servers run in kernel mode, and com-
munication is fast again. While it somewhat
defeats the original idea of a microkernel, it
still has the advantage of well-partitioned ker-
nel components and a more modern core ker-
nel: The Mach memory management code was
later integrated into BSD.

NEXTSTEP
NEXTSTEP, which was released in a 1.0 ver-

sion in 1989, chose to go with this design.
NEXT had removed the core kernel parts from
the 4.3BSD kernel and layered it on top of
Mach, in kernel mode. This way, NEXT was
many years ahead of the competition with
NEXTSTEP being the first desktop/GUI oper-
ating system that supported preemptive multi-
tasking, memory protection and UNIX com-
patibility. At first NEXTSTEP only ran on their
own Motorola 68K-based machines, but was
later ported to SPARC, PA-RISC and i386,
when NEXT started licensing it under the name
“OpenStep” to other hardware manufacturers,
so it was highly portable. When Apple acquired
NEXT in 1997, they added PowerPC support
and removed support for all architectures other
than i386; the latter would serve as the fallback
solution when Apple switched from PowerPC
to i386 in 2005/2006.

Rhapsody and OS X
With Apple’s acquisition of OpenStep, many

more changes were made to the operating sys-
tem which now had the interim name “Rhap-
sody”: They replaced the “DriverKit” driver
model with the new “I/O-Kit” system, updated
Mach 2.5 with the Mach 3.0 codebase, updated
the BSD part with 4.4BSD and FreeBSD code
and added support for the HFS filesystem and
Apple networking protocols to the kernel. In
userland, Mac OS X is pretty much
NEXTSTEP/OpenStep, with the native “NS”

API renamed to Cocoa, the Mac OS 9 API
“Toolbox” ported as a compatibility API (now
named “Carbon”), “carbonized” versions of the
OS 9 Finder and QuickTime technologies, plus
a VMware-like Virtual Machine called Blue-
Box (“Classic”) that runs OS 9 and its applica-
tions unmodified.

Architecture
The Mac OS X kernel, named “XNU” (“X is

not UNIX”) consists of three main compo-
nents: Mach, BSD and I/O-Kit.

Mach
Being the only operating system that still uses

Mach code (not counting GNU/HURD), Mac
OS X has evolved from the original code base
quite a bit, but the architecture is basically un-
changed. Mach (“osfmk” in the kernel source
tree, which stands for “OSF microkernel”)
calls address spaces “tasks”, and one task can
contain zero or more threads. Being policy-
free, there is little information associated with
a task, so, for example, there is no UNIX-style
current working directory or environment as-
sociated with it. While there are few surprises
in the memory management code compared to
other modern operating systems, the key dis-
tinctive feature of Mach is Mach Messaging. A
task can have any number of “ports”, which are
interprocess communication (IPC) endpoints.
One task can subsequently send a message
from its originating port to its peer port, and
Mach will take care of security, enqueueing,
dequeueing, network opacity (ports can be on
different machines) and, if necessary, byte
swapping. For programming convenience, the
Mach Interface Generator (“MIG”) can gener-
ate stub code from interface definitions, so that
two processes can talk to each other using sim-
ple function calls, but internally, this will be
translated into Mach messages.

BSD
The BSD part of the kernel implements

UNIX processes on top of Mach tasks, and
UNIX signals on top of Mach exceptions and
Mach IPC. UNIX filesystem semantics are im-
plemented here just like TCP/IP networking.
And while the VFS (virtual filesystem) compo-
nent allows plugging in BSD-style filesystems,
the /dev infrastructure plugs right into I/O-Kit.
BSD exports all the semantics that an applica-

24. Chaos Communication Congress

Volldampf voraus! 87

tion expects from a UNIX/BSD/POSIX com-
patible operating system, like “open()” and
“fork()”, through the syscall interface.

Since there are basically two kernels in XNU
- Mach with its message passing API and BSD
with the POSIX API - there are two kinds of
syscalls. While both use a single int 0x80/
sysenter/sc entry point, negative syscall num-
bers will be routed to Mach, while positive
ones go to BSD. Note that, just like on Win-
dows NT, applications may not use int 0x80/
sysenter/sc directly, as this is a private inter-
face. Instead, applications must call through
libSystem, which is the equivalent of libc on
OS X.

I/O-Kit
When NEXTSTEP was ported to different

architectures and was renamed to OpenStep, it
got a new driver model, called “DriverKit”,
which was based on the Objective C program-
ming language and therefore was object ori-
ented, and allowed an inheriting hierarchy of
device drivers: For example, there could be a
generic IDE/ATA device driver that handled
reads and writes of blocks on an IDE bus, a
hard disk driver and a CD-ROM driver that
subclassed the generic IDE driver, and another
CD-ROM driver that subclassed the generic
CD-ROM driver to work around some quirks
for one specific CD-ROM drive model. This
architecture helps a lot to combat duplicate
code: In contrast to other operating systems
like Linux, a new device driver is not written
by copying the closest match and modifying it,
but by subclassing an existing driver binary
and overwriting some methods with new code.
“I/O-Kit” is a higher performance reimplemen-
tation of DriverKit in a subset of C++ (no ex-
ceptions, multiple inheritance, templates, run-
time type information). I/O-Kit supports some
classes of drivers in user mode.

KEXTs
I/O-Kit drivers are dynamically linked at run-

time, as so-called “KEXTs” (“Kernel Exten-
sions”). KEXT can not only link against the I/
O-Kit component, but also against other parts
of the kernel. This way, filesystem and net-
working KEXTs (NKEs) are possible. Every
KEXT, which typically resides in /System/
Library/Extensions, is a bundle, i.e. a subdirec-
tory which contains the actual binary and an

XML description of dependencies and the parts
of the kernel it links against.

Other interesting details
The following sections describe some other

interesting details of or around the Mac OS X
kernel.

Booting
While PowerPC-based Macs use OpenFirm-

ware, Intel-based machines use EFI (“Extensi-
ble Firmware Interface”). Both kinds of firm-
ware are a lot more powerful than the 16 bit
BIOS still shipping on PCs. While EFI can
boot off USB and supports GPT partitioning
and FAT32 file systems, the rest of the feature
sets of OpenFirmware and EFI are pretty simi-
lar: Both can boot off FireWire, and both sup-
port APM (“Apple Partition Map”) partitioning
and the HFS file system, as well as firmware-
level drivers. BootX is the bootloader for
OpenFirmware, and boot.efi the bootloader for
EFI. Both can decode HFS and can therefore
read the kernel from the root partition. If there
is a “KEXT cache”, i.e. a file with all prelinked
KEXTs suited for this configuration, that is
newer than the newest file in /System/Library/
Extensions and newer than the running kernel,
the boot loader will load this cache; otherwise,
it will go through all KEXTs and load the ap-
propriate ones by comparing them to the en-
tries of the “device tree” which has been
passed from the firmware to the bootloader.
Later, a KEXT cache will be written to disk to
speed up the next boot. This is somewhat simi-
lar but more flexible than the Linux “initrd”
approach.

Mach-O
Mac OS X does not use the ELF file format

for binaries (executables, libraries, KEXTs)
like practically all other UNIX systems. In-
stead, it uses Mach-O, which has roughly the
same feature set, but one interesting addition:
A single, so-called “fat” or “universal” binary
can contain code for more than one architec-
ture. So on OS X 10.5 Leopard, for example
/usr/lib/libSystem.dylib contains code for Pow-
erPC, PowerPC 64, i386 (32 bit Intel) and
x86_64 (64 bit Intel). This way, a single Mac
OS X 10.5 Leopard installation DVD can boot
on four different architectures, and there is no
need for “lib/lib64” (64 bit Linux) or

27. - 30. Dezember 2007, Berlin

88 24C3

“SYSTEM/SYSTEM32/SYSTEM64” (64 bit
Windows) style duplicate directories for differ-
ent architecture/bitness versions of the same
code. The function grade_binary() in the ker-
nel’s Mach-O loader decides which part of the
binary to run. If the system is an i386 and the
Mach-O file contains only PowerPC code, exe-
cution will be handed to Rosetta.

Rosetta
Rosetta is a compatibility solution based on

Transitive's QuickTransit technology that al-
lows running (32 bit) PowerPC code on i386
CPUs. This is done by dynamically recompil-
ing the PowerPC code into native i386 code
and managing the interfaces between emulated
and native code - in practice, this means byte-
swapping all data passed between i386 and
PPC code, because i386 is Little Endian and
PPC is Big Endian. From a performance stand-
point, the optimal design would have been to
only emulate the application and to use the na-
tive versions of all libraries it links against, but
this would have been very impractical, since
the interface between native and emulated code
would have been very broad. A much easier
way to achieve high compatibility is to run the
complete application including all of its librar-
ies in emulation, and only byte swap when the
application makes syscalls to the native kernel.
A side effect of this approach is that you poten-
tially need all PPC versions of the system li-
braries installed on an Intel system, as soon as
you only use a single PowerPC application in
emulation.

A user can easily make experiments with this
amazing technology by invoking /usr/libexec/
oah/translate manually to force emulation of
PowerPC code, even if an executable is avail-
able in native code.

Intel specifics
While i386 support in XNU has existed since

the mid-90s, and has been a shipping feature of
OpenStep, the i386 part had not been used in
Mac OS X until the advent of Intel machines in
2005/2006. And with the introduction of the 64
bit Mac Pro in 2006, x86_64 (AMD64, Intel64,
EM64T, x64, ...) support has been added to
XNU - but XNU is not a 64 bit kernel, though.
XNU supports 64 bit user mode applications,
but it is 32 bit itself. Since porting a 32 bit ker-
nel to 64 bit is a big task, it could not be done

in just half a year between the introduction of
the first Intel machines in January of 2006 (un-
til then, Apple developers had worked on final-
izing the 32 bit i386 version) and the introduc-
tion of the Mac Pro in August.

There is just a single kernel image for 32 and
64 bit Intel: It is loaded as a 32 bit process in
32 bit protected mode on both kinds of ma-
chines, and if 64 bit support is detected, the
kernel switches into long mode compatibility
mode - a mode that supports running 32 bit
code, but also allows easy switching to 64 bit
code. So the whole kernel code is still unmodi-
fied 32 bit code, but tiny stubs that deal with
copying between user address spaces (which
can be 64 bit), and the syscall and trap handlers
are 64 bit code. Next to being an easy port, this
has the extra advantages that the 64 bit capable
kernel can still easily support 32 bit KEXTs,
and conserves memory by being able to use 32
bit pointers throughout a large part of kernel
code. On the flip side, the kernel cannot use the
extended x86_64 register set and is restricted
to a 32 bit address space.

But while all other common 32 bit operating
systems like Linux, Windows and the BSDs
split the address space into 2 GB for user and 2
GB for kernel (2/2) or 3 GB for user and 1 GB
for kernel (3/1), the i386/x86_64 version of
XNU uses a 4/4 split: While the kernel is run-
ning, the user's data is not mapped into its ad-
dress space, and while user code is running, the
kernel is not mapped. So user and kernel can
each have 4 GB of address space with the dis-
advantage of being less efficient in copying of
data between user and kernel. But this way,
kernel mode can map more devices into its ad-
dress space (like video cards with a lot of
memory), and manage more RAM, thus push-
ing out the limit when a true 64 bit kernel is
required.

iPhone
Mac OS X runs on 32 and 64 bit PowerPC

and i386/x86_64 (“Intel”) Macintosh ma-
chines, on the Apple TV set-top-box, which is
also i386 based, and on the iPhone and the
iPod touch - these devices have ARM CPUs.
Specifically for these devices, XNU and parts
of the Mac OS X userland have been ported to
ARM. The ARM kernel does not support load-
ing arbitrary KEXTs and is digitally signed, but

24. Chaos Communication Congress

Volldampf voraus! 89

otherwise mostly equivalent to the PowerPC
and i386/x86_64 versions.

What makes XNU great
While XNU might not be as scalable or as

tidy as other operating systems (but catching
up), it is a very modern UNIX with novel ideas
and unique features:
• The kernel extension ABI is stable over sev-

eral major releases of the OS.
• Fat/universal binaries allow for a single in-

stall CD or hard disk installation that runs on
different CPU architectures, without the clut-
ter of duplicating files or directories. Fur-
thermore, 3rd party application vendors can
ship a single binary that runs on multiple ar-
chitectures.

• I/O-Kit allows code reuse for drivers without
code duplication.

• The KEXT cache is a clean way to speed up
boot times.

• The clear separation between Mach, BSD
and I/O-Kit helps keeping the cost of code
maintenance low.

• The powerful Mach Message API is useful
for user mode applications.

• Since Mac OS X 10.5 Leopard, the i386 port
of OS X is the only operating system with
full POSIX-conformance that doesn't contain
AT&T UNIX code.

Open Source & Hacking
With every minor operating system release

(i.e. 10.5.0, 10.5.1...), Apple usually releases
the whole set of source code for all compo-
nents of the system that are under an open
source license. which is basically everything
but the GUI. About half of these packages are
patched versions of common open source pro-
jects (like “bash” and “perl”), the rest is Apple
code, and is released under the “Apple Public
Source License” APSL, which is a BSD-style
license. This makes it compatible with the
standard BSD license, as well as with the
OpenSolaris CDDL. But there is no live source
code repository for developers visible outside
Apple, so there is no real open source commu-
nity that does any development on the APSL
components. But there are other uses for Open
Source: It helps KEXT developers debugging,
it allows governmental or educational institu-
tions to build their own versions, with added

security for example, and it allows commercial
companies or universities to add functionality
to the kernel, either to sell it, or for research
(SEDarwin, L4/Darwin).

But the source code is not necessarily com-
plete. The XNU source code lacks most of the
ARM bits, and Apple also states that other
parts have been left out because of trade secrets
with Intel. But a kernel compiled from the
open source can still be used as a drop-in re-
placement for the shipping binary.

Revisiting the Buzzwords
• The OS X kernel is not Mach. The OS X

kernel is called “XNU”, which consists of
Mach, BSD and I/O-Kit.

• The OS X kernel is not a microkernel. Al-
though Mach has been used as a microkernel
in other projects, XNU is a very traditional
monolithic kernel with BSD and (most) driv-
ers in kernel mode.

• The OS X kernel is not based on FreeBSD.
The BSD part is based on 4.4BSD with some
code from FreeBSD, NetBSD and others.
The OS X userland UNIX tools are mostly
based on FreeBSD code, though.

• The OS X kernel is not written in C++. The I/
O-Kit part is written in a subset of C++, but
Mach and BSD are written in C.

• The OS X kernel is not 64 bit. It supports 64
bit user mode applications on a 64 bit Pow-
erPC or Intel CPU, but the kernel itself runs
in 32 bit mode and is bound to the 4 GB ad-
dress space limit.

• The OS X kernel is Open Source, but there is
no live source code repository visible outside
of Apple, and the released source does not
necessarily contain all code, but can be com-
piled into a working system.

• The OS X kernel is UNIX, but only since OS
X 10.5 Leopard, and only for 32 bit i386,
since this is the configuration that passed the
POSIX conformance test and may therefore
use the OpenGroup's “UNIX” trademark.

References
• Singh, Amit: Mac OS X Internals. A Systems

Approach; Addison-Wesley, 2006.
• http://kernel.macosforge.org/
• http://www.opensource.apple.com/darwinsou

rce/

27. - 30. Dezember 2007, Berlin

90 24C3

Introduction in MEMS
Skills for very small ninjas

lecture

Science

Tag 3 12:45

Saal 3

en

Jens Kaufmann

MicroElectroMechanical Systems or MEMS are as part of micro system technology, systems
with electrical and mechanical subsystems at the micro scale. It is basically an introduction
in the technology and in its potential for hardware hacks and potential ways of homebrew
devices.

Compared to a micro processor, a small sensor or actuator, which normally consists of just one
function a micro system combines the data acquisition, processing, and forwarding in itself. If
this micro system now contains mechanical part to interact with its environment it is considered
to be a MEMS. With constantly increasing experience in MEMS manufacturing the prices per
system dropped and the use of the highly sophisticated devices move from strictly automotive,
R&D and military applications into consumer products. The wiimote and the iPhone are just
two well known products which improve the user experience by the intelligent use of the smart
systems.The delay of invention and market introduction of MEMS is mostly caused by the
substantial investments to be done to produce this kind of device. The most technologies
commonly used until now are transfered from the microchip manufacturing. The so called silicon

24. Chaos Communication Congress

Volldampf voraus! 91

24c3

What are Mems

MEMS is the acronym for MicroElectroMe-

chanicalSystem and describes a very small

device with expanded functionality com-

pared to microelectronics. Mechanical struc-

tures are used to interact with the environ-

ment to allow sensing or act. The term

MEMS is often used in combination with

prefixes or alterations to describe the inte-

gration of other functionality, like RFMEMS

(Radio Frequency), BioMEMS (mostly mi-

crofluidics) or MOEMS(optical microsys-

tems).

The first developments that can be consid-

ered as Microsystems were made in the

1970s like the compact disc or LC Displays.

Also the fundamental processes like ani-

sotropic etching of silicon and the LiGA

process were developed at this time. This

opened up the path for first the academic

successes in the 1980s and than the com-

mercial ones in the 1990. Microsystems can

be found today in almost every commercial sector, Information and communication, in entertain-

ment, automotive and avionic, as well as medical and health related applications. But the military

is still one of the biggest sectors for potential applications.

MEMS are always systems that consist of different components with three major functions: input,

processing and output. This is what differentiates a micro system from a micro structure, and so

therewith allowing interactions with the environment. And so this different components can be

manufactured separately (modular integration) or all on one substrate (monolithic integration) as

shown above. [1]

What kind of MEMS are they

A microsystem can be classified by the functionality of the system, sensor, actor or processing

unit. But it is common to classify by the kind of components it consists of.

functionality components examples

electronics microelectronic com-
ponents

logic, memory, mixed signals

RF microstructures antennas, transformers, passive components

mechanics micro sensor pressure, acceleration, momentum, temperature, flux

micro actuator micro relays, pumps, valves,

micro fluidics reactors, dosing systems, separator

micro acoustics transducer, filter, signalling,

optics micro optics fibre optics, mirror arrays, spectrometer

chemistry/

biology

micro chemistry/
biology

Analyse

Introduction to MEMS

Introduction to MEMS - Jens Kaufmann� 1

Monolithic integrated accelerometer form Analog

Devices

27. - 30. Dezember 2007, Berlin

92 24C3

24c3

How MEMS are made

The typical MEMS are made out of single crystal Silicon discs. These discs are made by pulling a

circling start crystal out of a moulded Silicon bath. The rod which was manufactured will than be

sliced, lapped and polished. This ensures a bulk material of constant quality.

The typical silicon processing for MEMS is based on the lithography used in micro electronics. A

photo mask is necessary for every step in the process that requires selective exposure. The mask

can be positive of or negative depending on the chosen resist. The process flow looks always like

this:

1. superimpose photoresist

2. expose photoresist

3. develop photoresist

4. etch or modify uncovered material OR growth

of a new layer within the resist

5. resist stripping

6. optional: removal of sacrificial layer(s)

7. optional: deposit a layer onto the whole sur-

face

8. go to 1

To achieve a simple system like a pressure sensor it is

necessary to repeat this flow 17 times. This pressure

sensor is a good example of Silicon Bulk machining.

Some structures are formed on the surface of the wafer

and than the mechanical structure is formed by modify-

ing the wafer itself - the so called bulk material [2]

The other way to make MEMS from silicon is sur-

face micro machining. In this case the mechanical

structure is formed by:

1. depositing and structuring a sacrificial

layer,

2. depositing and structuring of a poly silicon

layer,

3. removing of the sacrificial layer,

Generally, an accelerometer is often manufactured

using this approach. A normal accelerometer is

formed by cantilever with a weight at the end.

Another widely used technology is LiGa. LiGa is the

German acronym for Lithography, electroplating

(Galvanoformen), molding (Abformen). In the begin-

ning it was just possible by utilising high energy x-rays to expose a PMMA resist. This resist was

covering a conductive seed layer which made it possible to electroplate in the mould and so elec-

troform large 2.5D metallic structures. The electroplated structure is than removed from the wafer

and becomes a mould itself for micro injection moulding. This gives the possibility to make many

parts in a relatively cheap way. The biggest disadvantage is the necessity of a synchrotron to gen-

erate the x-rays.

Today UV LiGA uses coherent UV light and a negative resist like SU-8; which is commonly used to

achieve similar structures ("Poor mans LiGA"). The drawback with this method is the relative low

resolution because of the long UV light wavelength.

Introduction to MEMS

Introduction to MEMS - Jens Kaufmann� 2

Surface micro machined Gyroscope

4 layer mask for a bulk micro

machined pressure sensor

24. Chaos Communication Congress

Volldampf voraus! 93

24c3

Why is silicon still used for MEMS

Silicon is still the material of choice

against all odds. The main reasons

therefore are the very good me-

chanical properties, the possibility

for embedded electronics and the

anisotropic atomic crystalline struc-

ture. This causes also non uniform

etch rates. The rates between the

(100) plane and the (111) is from

100:1 up to 400:1, depending on the

temperature. That means the (111)

plane can be considered as a natural

etch stop. The natural etch stops

combined with artificial stops make

structures possible that cannot be

achieved with outer isotropic materi-

als. All this possibilities give the de-

vice designer perfect ways to inte-

grate his ideas in one monolithic design. [1]

And if he is part of a developer team for a semiconductor manufacturer he will have all the equip-

ment to make the device at his fingertips. That explains why the big players in the MEMS market

are mostly semiconductor companies.

Will we see home grown MEMS in the near future

The manufacturing of MEMS is still a large scale batch process. Even a small cleanroom

with the necessary facilities to run one process chain for silicone is between 5 and 10

million �. And such a process has an intrinsic inflexibility to design changes, as they are

costly and difficult.

Errors are really costly too, so this which makes it unavoidable to manufacture tremen-

dous quantities to produce just cost-covering.

The industry experiences the same problems at the moment with a drift in the market

for tailored solutions. "Responsive manufacturing" is the weapon to face this new devel-

opment. That means that production capabilities must be build that allow producing a

product cost-effectively in a "Batch of one".

In MEMS this is even more difficult than in other industries because everything is based

on one material. The academic community is con-

stantly trying to develop new processes with new ma-

terials to enable manufacturing by smaller players

without heavy financially resources.

And this is where fabbing takes its place in future

home grown MEMS development. A fabber is basically

a 3D-Manufactuing device that allows the user to

manufacture physical free form objects. The most

ideas are based on rapid prototyping/manufacturing of

3D structures. The additive modelling generates 3D

structures by successive adding materials at the right

place. The most rapid prototyping technologies are

working with this approach like stereo lithography and

fused deposition modelling. Electro deposition or

chemical vapour deposition are also considered as

additive modelling. The superiority of this method

Introduction to MEMS

Introduction to MEMS - Jens Kaufmann� 3

STL generated spider models

made from Resin at the LTZ

Hannover

Standard anisotropic etch geometry

27. - 30. Dezember 2007, Berlin

94 24C3

24c3

compared to subtractive methods is due to the fact that less waste is produced and the

design space is not predestined.

Different concepts out of the rapid prototyping have proven themselves as capable of

producing microstructures. The stereo lithography (STL) for example uses a liquid epoxy

resin with a photo active linker as material. This resin is locally cured by writing with a

laser beam onto the liquid level. The cured layer sticks to the vertical moveable stage.

This stage then is sunk further into the resin so that liquid resin will cover the object and

the next layer can be cured by the Laser. No support structures are necessary. The laser

centre in Hannover, Germany has demonstrated they can produce micro parts with this

technology. [3]

Based on a similar idea as the STL is the

Selective Laser Sintering (SLS). Metal,

polymer or ceramic powder are selec-

tively fused together by the laser. The

biggest advantage is the different mate-

rial which can be used. [4]

Fused Deposition Modelling (FDM) uses a
standard Cartesian robot to extrude liquefied
thermoplastic onto the working stage. The
working material can be changed at any time
during the process. A support material is
needed for overhanging structures. Recent
research has shown that this method is also
capable of manufacturing micro parts, as well
as form part out of LTCC-like materials. [5]

Best technologies for MEMS

The Manufacturing of MEMS needs a high degree of accuracy, which can be only pro-

vided by STL, SLS and FDM. The condition for a variety of different materials cannot be

satisfied by stereo lithography, which is the most accurate process at the moment

(<1μm). The need of the selective laser sintering for a high power laser makes it not

commonly affordable. That leaves Fused Deposition Modelling as the method of choice.

Fabbing can also be used by its own or in combination with other techniques. The most

processes have been already described before or don’t need any explanation. By using

FDM and different material a large variety of MEMS can be formed. Further more there

are new or hybrid technologies, which needs to explained in more detail.

Plating mould forming (soft lithography)

Electroforming of metallic parts was utilising a patterned photoactive resist onto conduc-

tive surface as mould for the electroplating process. This process requires usually a sev-

eral facilities and steps. Direct deposition of a polymer by FDM or syringe deposition

reduces these steps to deposition of the mould, electroplating itself and optional remov-

ing the mask and seed layer. [6]

Piezo ceramic FDM process

The deposition of ceramic containing polymer can be used to produces 3D-ceramic

structures. As proposed by Safari and Danfarth. LTCC (low temperature co-fired ce-

ramic) is a ceramic compound in a polymer matrix. It is then fired at 850 °C. [5]

Introduction to MEMS

Introduction to MEMS - Jens Kaufmann� 4

Wineglasses from Nagoya University, (a) is

4mm high, (b) is 1500 μm high

24. Chaos Communication Congress

Volldampf voraus! 95

24c3

Local plating nozzle

It was shown that special nozzles can be used to deposit metal in a defined area. They

used a double nozzle with inlet and outlet to render a drop of electrolyte between the

nozzle and the surface. And so the plating can take place just in the area, which is cov-

ered with electrolyte.

Powder blasting

A subtractive method which could allow

cheap and fast processing of mesoscale Mi-

crofluidic chips is the powder blasting

method. Thereby a polymer substrate is cov-

ered with a metallic mask. Then the open ar-

eas of the substrate are exposed to a stream

of a few microns big alumina particles. This

particle stream erodes with a different rate, so

that it can form 2.5D structures cheap and

easily.

References

[1] � "Mikrosystemtechnik fur Ingenieure" by W. Menz and P. bley, VCH, ISBN 3-527-29003-6,

Weinheim, 1993.� (In German)

[2] � "Fundalmentals of Microfabrication" by Marc Madou, CRC Press, ISBN 0-8493-9451-1,

New York, 1997.

[3] � “Metal and polymer microparts generated by laser rapid prototyping “ by Neumeister, A.;

Czerner, S.; Ostendorf, A.In: 4th international congress on laser advanced materials proc-

essing, 16.-19. Mai 2006, Kyoto. Paper No. 050873

[4] � "Selective Laser Micro Sintering with a Novel Process" by Horst Exner, Peter Regenfuss,

Lars Hartwig, Sascha Klötzer, Robby Ebert.�

[5] � "Processing of Piezocomposites by Fused Deposition Technique," A. Bandyopadhyay, R.K.

Panda, V.F. Janas, M. Agarwala, S.C. Danforth and A. Safari, J. Am. Cer. Soc., 80, 6, 1366-

72, (1997).

[6] � “ Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition” by

Giovanni Vozzi, Christopher Flaim, Arti Ahluwalia and Sangeeta Bhatia, BiomaterialsVolume

24, Issue 14, , June 2003, Pages 2533-2540.

Introduction to MEMS

Introduction to MEMS - Jens Kaufmann� 5

Picture of an accelerometer beam real-
ised in two steps by powder blasting
from the two substrate sides

27. - 30. Dezember 2007, Berlin

96 24C3

Just in Time compilers - breaking a VM
Practical VM exploiting based on CACAO

lecture

Hacking

2007-12-28 17:15

Saal 3

en
Peter Molnar
Roland Lezuo

http://cacaojvm.org/ cacaojvm.org

We will present state of the art JIT compiler design based on CACAO, a GPL licensed
multiplatform Java VM.
After explaining the basics of code generation, we will focus on "problematic" instructions,
and point to
possible ways to exploit stuff.

A short introduction into just-in-time compiler techniques is given: Why JIT, about compiler
invocation, runtime code modification using signals, codegeneration. Then theoretical attack
vectors are elaborated: language bugs, intermediate representation quirks and assembler
instruction inadequacies.With these considerations in mind the results of a CACAO code review
are presented. For each vulnerability possible exploits are discussed and two realized exploits are
demonstrated.

24. Chaos Communication Congress

Volldampf voraus! 97

Just in Time compilers - breaking a VM

Roland Lezuo <roland.lezuo@chello.at>

Peter Molnár <peter.molnar@wm.sk>

November 18, 2007

1 About CACAO

CACAO is a multiplatform Java Virutal Machine featuring a just-in-time
compiler. Although CACAO features an interpreter, by default it works in
JIT-only mode, so all code gets compiled prior to execution. The CACAO
project was started in 1997 as a research project at Vienna University of
Technology. Today the project is fully covered by the GPL v2 license.

2 CACAO Codegenerators

CACAO provides code generators for many platforms: currently code gen-
erators for ALPHA (FreeBSD, Linux), ARM (Linux) i386 (Cygwin, Darwin,
FreeBSD Linux), MIPS (Irix, Linux), POWERPC (Darwin, Linux, NetBSD),
SPARC64 (Linux), x86 64 (Linux) and s390 (Linux) are available. A code
generator has to implement a defined internal interface consisting of a set of
exoported functions and symbols and is linked in statically into the virtual
machine.

3 Java bytecode

The Java compiler does not produce machine code which can be executed
on the host CPU directly but an intermediate representation called bytecode

targeting a virtual machine. There are around 200 bytecode instructions de-
fined in the Java Virtual Machine Specification1 The most notable difference
between java byte code and usual machine code is that bytecode instructions

1http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.
html

1

27. - 30. Dezember 2007, Berlin

98 24C3

Listing 1: Stack operations

i c o n s t 3
i c o n s t 5
iadd

Figure 1: Stack changes

don’t use registers as operands, but operate on a operand stack instead what
leads the notion of a computation model called stack machine.

The program in listing 1 manipulates the stack as shown in figure 1:
the instruction iconst 3 pushes the integer 3 on top of the stack, iconst 5

pushes 5, iadd takes the two topmost elements of the stack, adds them and
pushes the result back. The stack is growing from the bottom to the top.

The operand stack consists of 32 bit wide stack slots. A single stack
slot can accomodate a value of the primitive types boolean, char, byte,

short, int or an object reference. To accomodate a long or double value,
two stack slots are used.

Instructions are variable sized and consist at least of one byte - the opcode
optionally followed by several bytes representing operands embedded in the
instruction itself. The getfield instruction for example is used to retrieve
the value of an object’s field and contains a two byte field specifying the
fields index. The object reference is poped from the stack and the result -
the field’s value - is pushed on the stack.

Arithmetic instructions are typed and special variands are defined for the
various primitive types: (e.g. iadd adds two int whereas ladd adds two
long values).

4 Register allocation

A naive compiler would generate machine code that would map the java
operand stack to a stack located in memory. This is actually the approach
used by the Jikes RVM baseline compiler and the approach kaffe’s JIT used
to use but is suboptimal, because of the property of memory accesses beeing

2

24. Chaos Communication Congress

Volldampf voraus! 99

Listing 2: Codegeneration macros

#define M OP3(opcode , y , oe , rc , d , a , b) \
do { \

∗ ((u4 ∗) cd−>mcodeptr) = (((opcode)<<26) | ((d)<<21)\
| ((a)<<16) | ((b)<<11) | ((oe)<<10) | ((y)<<1)\
| (rc)) ; \

cd−>mcodeptr += 4 ; \
} while (0)

#define M IADD(a , b , c) M LADD(a , b , c)
#define M LADD(a , b , c) M OP3(31 , 266 , 0 , 0 , c , a , b)

expensive. CACAO instead allocates the slots of the java operand stack to
CPU registers, for example stack slot 2 to the general purpose register 16.
In the case that there are more stack slots needed than registers available,
stack slots are mapped to memory locations. On RISC plattforms, they need
to be loaded into registers before usage, and stored back afterwards.

5 Code generation macros

The code generator iterates over all instructions of the method to be compiled
and depending on the opcode, translates them into native machine code. The
generated machine code is written to temporary memory and afterwards
copied to an executable memory location. It is generated by macros, so care
has to be taken for side effects of arguments which could be evaluated twice.
To ease maintenance of the code generators, all platforms try to adhere to
naming conventions originally inspired by the alpha architecture. Listing 3
shows the implementation of java’s iadd operation, and addition of two 32
bit signed values on POWERPC64. First, the operands are loaded, then
the macro M IADD is used to emit machine code that adds the values in two
registers and stores the result in a desitnation register, M EXTSW is needed for
sign extension and is platform specific and finally the result is stored in the
destination register. jd and iptr contain a pointer to the state of the JIT
compiler and the currently processed instruction. The implementation of the
macro M IADD is shown in listing 2.

The operands of bytecode instructions are allocated to registers or mem-
ory. On load-store architectures, memory operands need to be loaded into
registers prior to use what is achieved using the functionemit load s1, emit load s2

3

27. - 30. Dezember 2007, Berlin

100 24C3

Listing 3: Codegeneration for iadd

case ICMD IADD:
s1 = em i t l o ad s1 (jd , i p t r , REG ITMP1) ;
s2 = em i t l o ad s2 (jd , i p t r , REG ITMP2) ;
d = codeg en r eg o f d s t (jd , i p t r , REG ITMP2) ;
M IADD(s1 , s2 , d) ;
MEXTSW(d , d) ;
em i t s t o r e d s t (jd , i p t r , d) ;
break ;

and emit load s3. In case the operand was allocated to a register, they
simply return the register number, otherwise, code is generated to load the
memory operand into a scatch register and the number of the scratch reg-
ister is returned. The destination register of an operation is retrieved using
the function codegen reg of dst, which may again return a scratch register
for memory destinations and finaly emit store generates code to store the
result in case it belongs to memory. See listing 3 for an example showing the
implementation of the iadd byetcode instruction on POWERPC64.

6 Post compile time code patching

One reason the generated code is written into a buffer is due to unresolved
jumps. Imagine a forward jump in a method wheter the target address
points into code still not generated and the compiler does not know the
exact offset in advance as it depends on the instructions in between. For
that reason a post-pass has been added to the compiler which patches the
code after generation. During machine code generation a function named
codegen add branch ref is responsible for collecting positions of branches
that could not be resolved and associating them with target basic blocks. The
branch instructions are then patched using the machine dependend function
md codegen patch branch to contain the correct offset after the complete
method has been compiled. By using the machine dependent patching func-
tion the post compilation phase can be kept platform independent.

7 Data segment

The generated code makes use of constant values: integer constants, address
constants (function entry addresses, addresses of static members). Some

4

24. Chaos Communication Congress

Volldampf voraus! 101

Figure 2: Data segment layout

architectures support immediate values of the native word size, so such values
can be embedded in the instruction flow whike other architectures have a
fairly limited range of immediate operands, so those values need to be placed
into memory. Beacause of this the executable method’s code has a block
of memory prepended called the data segment (see figure 2) holding those
constant values. On most architectures, there is one pv register reserved to
hold the procedure vector - the current method’s entry point. The values
on the data segment can then be loaded relatively to the pv register with
negative offsets, or relatively to the current program counter with negative
offsets.

The data segment of each method always contains a method header. This
is a data structure containing metadata about the method, like a pointer to a
method descriptor, the stack frame size, the exception table, the line number
table (see ?? for details).

8 Runtime code patching - Patchers

In java, classes are loaded by the run-time system only if they are needed. If
generating code for a method that depends on other classes (uses static fields,
calls methods), the runtime system needs information about the referenced
class, and therefore it has to be loaded as well. One attempt called eager

loading consists of loading all those referenced classes at compile time but it
showed to be suboptimal, because at run-time, the code using the referenced
class may actually never be reached. A better attempt is to deffer expensive
class loading to the point, where the code that uses the class is reached. This
is called lazy loading.

For lazy loading, incomplete code that has to be patched at run-time with
the missing information is generated. The first instruction of the imcom-
plete code portion is replaced by a trap instruction and a patcher reference

is created: a datastructure containing data about the missing information
associated with the position of the trap instruction.

5

27. - 30. Dezember 2007, Berlin

102 24C3

Figure 3: Patcher assembler output (new)

Consider the example of a getstatic instruction, which loads a static
field of a given class. The class may be unresolved when the bytecode is
translated in which case the runtime system has to load and initialize the
class, resolve the address of the member prior to execution of the generated
code. For this purpose the first instruction of the machine code sequence is
replaced by an illegal instruction. Once it is reached, the operating system
delivers a signal the the virtual machine and control is passed to the regis-
tered signal handler. The signal handler needs to be able to differ patchers
from exceptions, so it first examines the failing instruction, whether is really
corresponds to a patcher call. The handler then looks up the proper patcher
by using the mapping of positions to be patched to patcher references and
invokes. The code generator needs to provide a function called emit trap

capable that generates a trap instrucion.
Figure 3 shows the generated assembler code on the x86 64 architecture:

the illegal instruction (u2da) is generated where patching is needed and once
reached control flows to a signal handler written in C. The disassembler
wrongly interpretes the bytes 15 87 ff ff ff as adc instruction. They are
part of the offset of the mov instruction covered by the ud2a instruction.

A race condition exists when patching the trap instruction in case he
instruction can not be overwritten atomically on multiprocessor machines.
One thread could just patch back the original code, while a different thread
executes exactly this code and comes across a half patched instruction. For
that reason single word instructions are used for trapping, as they can be
written back atomically.

6

24. Chaos Communication Congress

Volldampf voraus! 103

9 Compiler invocation

Beacause just-in-time compilation of methods is expensive and accounts to
run-time, CACAO tries to deffer it, simillary as it does for class loading. A
method is normally compiled the first time it is called. To achieve this, when
a class gets loaded, for each method a so called compiler stub is generated.
A compiler stub is a small piece of code, usually a single trap instruction
combined with a pointer to the method’s descriptor. Pointers to compiler
stubs are placed where method entry points would be placed normally: in
the class descriptor and in virtual function tables.

If such a compiler stub is invoked, the trap instruction causes control
to be passed to a signal handler which extracts the method descriptor from
the stub and passes it to the compiler subsystem. The compiler generates
machine code for the method and returns the method’s entry. Then, the
machine code before the call instruction is examined, to determine the method

pointer : the address where the pointer to the stub’s entry was loaded from.
This is a virtual function table entry, the data segment, or an immediate
operand in executable code. This location is then overwritten with the actual
method entry, so that further calls to the method are redirected to the newly
generated machine code.

10 Exceptions

Exceptions are an integral part of the Java language used a lot. Nonetheless
exceptions are rare events and occur irregularly.

Each method has an exception handler table associated. This table de-
scribes the start and end instruction of each exception handler directly cor-
responding to the Java language try clause. When an exception occurs at
some point in the program, a lookup is performed in the exception table.
The type of the occurring exception is compared to the type of each handler
covering the throwing instruction.

If a match can be found the handler is executed, else the exception is
propagated outside the method. For the caller this looks like a throwing
invoke instruction. As the caller of a method is unknown at compile time,
the caller has to be determined at runtime. This is achieved by looking up the
return address which is stored on the stack. The offset is known as CACAO
knows about the stack usage of each method. Stack space is allocated on
method entry and no dynamic allocation is performed.

An operation called ”stack unwinding” is performed whenever an ex-
ception is propagated to its caller. As control flow continues at the invok-

7

27. - 30. Dezember 2007, Berlin

104 24C3

ing instruction all callee saved registers have to be restored for each stack
frame unwound. Callee saved register are stored on the method stack when a
method is entered, therefore the restore operation is implemented by loading
these registers from known stack locations.

This process either terminates when an appropriate handler has been
found or the whole stack is unwound in which case the exception is unhandled
and the program will be aborted.

In CACAO no explicit code is generated for calling back the runtime
when an exception occurred but an illegal memory operation is performed.
POSIX compatible operation systems provide a signal handling mechanism
which invokes a function in this case. This signal handler tests if the memory
operation was performed intentionally and if so it calls the exception han-
dling code. In case the memory access took place unintentionally an internal
exception is thrown and the vm aborts.

When native functions have been called they could have thrown an ex-
ception too. Natives can not throw exceptions directly but have to notify the
runtime by setting a flag in the environment. When they return the envi-
ronment is checked for an exception and exception handling code is executed
when needed. Exception handling is complex because natives may call back
into Java code. The stack layout is only known in JIT code, native code has
a different stack layout and stack unwinding would fail when a native frame
is found. Therefore a chained data structure called stackframe info is built
up when invoking natives. Figure 4 illustrates this chaining. Technically
there are no stackframeinfo structures for JIT frames, as this stack layout
is known and contains all needed information already.

11 Bytecode Verification

Because the java virtual machine was designed to provide a sandbox en-
vironment, it can’t just start executing untrusted bytecode. It would be
easy to construct malicious bytecode that if executed would crash the virtual
machine. Therefore all bytecode is subject to verification prior to execu-
tion. Bytecode verification includes basic sanity checks of the class file, type
checking of bytecode instructions, checks for operand stack underflow and
enforcement of access protection as required by the java language.

8

24. Chaos Communication Congress

Volldampf voraus! 105

Figure 4: Stackframeinfo chaining with native invocation

12 Problematic byte code instructions

When looking for security problems you should first start by looking at
”strange” behaviour defined in the specification. The Java Virtual Machine
Specification is available online. Chapter 6 ha a list of all bytecode instruc-
tions. A JVM vendor has to implement them acording to their specification.
By looking through that list some strange instruction show up.

• TABLESWITCH, LOOKUPSWITCH The tableswitch instruction is
used to implement the switch/case statement and is an optimization of
the more generic lookuptable instruction. The lookuptable is followed
by possible 232 pairs of integer, address pairs. Tableswitch is followed
by 232 possible addresses. That is quite a number! Espcially when one
also knows that the size of a single method is limited to 0xFFFF bytes
by limitations from the classfile format.

• JSR, RET Another example are the jsr and ret instructions. Their
purpose is to implement the try/finally clause of the Java language.
The jsr instruction does no invoke any methods (despite its name), it
jumps to the finally block and stores the return address on the stack.
The ret instruction fetches the return address from a local variable,
for an intentional asymetry. The bytecode verifier has to treat return
addresses as an additional type to prevent hackers from returning to
an integer value they calculated.

9

27. - 30. Dezember 2007, Berlin

106 24C3

This alone are no security problems per se, but they are subtile details
which have to be implemented 100% correct to keep the sandbox tight.

13 Problematic assembler instructions

When translating the byte code into machine code appropiate instruction
have to be selected. There are different approaches for code generators. Some
vendors define a description language and generate the code responsible for
instruction selecting, others implement this by hand. Whatever approach is
taken, the instructions available are determined by the architectur the code
is executed on.

13.1 POWERPC64

The POWERPC64 architecture is an enhancement of the POWERPC ar-
chitecture and offers 64 bit address space and a 32 bit compatibility mode.
All instruction have a fixed 32 bit size. Immediate values are of course even
smaller than 32 bits. As a consequence loading a 64 bit address takes more
than 1 assembler instruction.

l i s 4 , msg@highest # load msg b i t s 48−63 i n to r4 b i t s 16−31
o r i 4 , 4 , msg@higher # load msg b i t s 32−47 i n to r4 b i t s 0−15
r l d i c r 4 , 4 , 32 , 31 # ro ta t e r4 ’ s low word i n to r4 ’ s high word
o r i s 4 , 4 ,msg@h # load msg b i t s 16−31 i n to r4 b i t s 16−31
o r i 4 , 4 ,msg@l # load msg b i t s 0−15 i n to r4 b i t s 0−15

It takes 5 to be exact. When generating code the size of the generated
code is an important factor. Not only for execution speed. And using 5
instruction to load an address (something happening very frequently) can not
be afforded. For that reason relative addressing modes are used whenever
possible. Assuming that register r12 contains a valid base address loading
an 64 bit value may be implemented as short as the next listing shows.

l d 4 ,0 x1234 (12)

This is just one instruction. In CACAO a datasegment is used to store con-
stant values and a register is reserved to point to the start of the datasegment.
So when needing to load an address, a relative addressing load instruction
can be used.

The problem here is that the offset is limited to 13 bits, that is 8192 bytes
or 8 KiB. The interesting question is what happens for bigger offsets? That
depends on the implementation, but it will probably be one of the following
3 cases:

• good: The compiler checks the offset, detects the overflow an emits an
instruction sequence capable of correctly handling the case.

10

24. Chaos Communication Congress

Volldampf voraus! 107

• not so good: The offset is trimmed to fit into 13 bit, an integer overflow
occures which can lead to an exploit.

• even worse: The offset is not trimmed. As most code generators OR
together bitfields it is very likely that the instruction will be changed.
This can most likely be exploited.

14 Examples found in CACAO

14.1 PPC64 32 bit interger overflow vulneribility

When loading addresses the offset is truncated to 32 bit (M LLD macro in
codegen.h). This leads to offsets larger than 4 GiB to wrap around and
accessing the datasegment at the beginning. The attacker has full control
over the contents of the datasegment as the content is determind by the
method executed. One way to fill the datasegment is by creating address
and interger constans (ICONST and ACONST bytecode instructions). The
exploit is of theoretical nature as a 4 GiB sized datasegment implies a 4 GiB
sized class file which is not possible.

14.2 PPC64 25 bit integer overflow vulneribility

The POWERPC64 branch instruction takes a 23 bit offset argument, but
needs 4 byte aligned target addresses, which effectivley gives a 25 bit branch-
ing offset. In CACAO conditional branches are not tested correctly for an
overflow and branch addresses are trimmed to fit into 23 bit. An branch
offset of 0x3FFFFFF will be interpreted as -1 and therfore jump backwards
instead of forwards. By jumping backwards the datasegment is targeted
which is in control of an attacker. The size of a method must be around
64 MiB for this explot to work. As java methods may only consist of 65535
instructions (classfile limitation) each bytecode instruction would need to use
1024 bytes of instruction code. There is no byte code instruction using 1024
byte of assembler instructions, so no exploit can be developed targeting this
weakness.

14.3 x86 64 32 bit integer overflow vulneribility

A similar vulneribility has been found for x86 64. But it can not be exploited
by the same argument as above.

11

27. - 30. Dezember 2007, Berlin

108 24C3

14.4 All architecture exception handler exploit

In CACAO there are special conventions for propagating the exception object
during stack unwinding. A ATHROW instruction is implemented as follows:
the pointer to the exception object and the faulting program counter are
placed into scratch registers itmp1 and itmp2 respectively and an assembly
language function, asm handle exception is jumped to that performs stack

unwinding. The program counter and exception type are then used to find
an exception handler block which is jumped to. The handler code expects
the register itmp1 to contain the exception object pointer. This approach
makes use of the assumption that the only way to reach an exception handler
is via the stack unwinding process. This is actually always true for compiler
generated bytecode but at bytecode level it is perfectly leagal to directly
jump into an exception handler block without an exception thrown. The
exception handler code then interprets the contents of the scratch register
itmp1 as exception pointer. Because itmp1 is used in arithmetic operations
as scratch register, it contents can easily be controlled and set to an arbitrary
value.

To exploit this vulnerability a virtual method on this arbitrary object
pointer is going to be invoked. When calling an object’s Nth virtual method,
first the pointer to the virtual function table is loaded from offset 0 of the
object pointer. Then, the method’s entry point is loaded from slot N of the
virtual function table. Finally, the method’s entry point is jumped to.

Using arrays, a fake object and a fake virtual function table with all
entries pointing to shell code are constcutred as shown in the source code in
figure 5. To set up the pointers in the arrays a method is needed to get the
address of the first element of a java array. This can easealy be achieved by
abusing of the default toString() implementation which outputs a string
containing the object’s class name and its address in memory. In cacao’s
implementation, an array starts with a fixed-sized header followed by data
elements, so the address of element 0 is calculated by adding a fixed offset
to the array pointer. Now if a virtual function on this fake object is called,
control is passed to the shell code.

12

24. Chaos Communication Congress

Volldampf voraus! 109

int addressOf (Object o) {
// e x t r a c t and return address from o . t oS t r i ng ()

}

// Archi t ec ture dependent s i z e o f array header
// F i r s t array element i s at t h i s o f f s e t from array poin t e r
int arrayHeaderSize = 16 ;
// Sh e l l code
byte [] code = { /∗ s h e l l code , n u l l b y t e s a l lowed ∗/ } ;
// Vir tua l func t ion t a b l e wi th 100 s l o t s
// Each element (method entry) po in t s to the s h e l l code
int [] v f t b l = new int [1 0 0] ;
for (int i = 0 ; i < v f t b l . l ength ; ++i)

v f t b l [i] = addressOf (code) + arrayHeaderSize ;
// Object , f i r s t words po in t s to v i r t u a l func t ion t a b l e
int [] obj = new int [1] { addressOf (v f t b l) + arrayHeaderSize) ;
// Objec t po int e r has to point to element 0 of ob j
int objPtr = addressOf (obj) + arrayHeaderSize ;

Figure 5: Constructing a fake java object

14.5 16 and 12 bit invoke virtual integer overflow on

PPC32 and S390 exploit

As described in section 14.4, to call a virtual method, two loads are involved:
the load of the virtual function table, and then the load of the method entry
from a specific slot of the virtual function table. The displacement of a
load instruction has a limited range: on i386 and x86 64 it is limited to 32
bits, on ppc to 16 bits, on s390 to 12 bits. If the load of the method entry
is implemented as a single load instruction, the maximal load displacement
limits the number of virtual methods that can be supported by such a design:
231/4 on i386, 231/8 on x86 64, 8192 on powerpc and 4096 on s390. The
question is, what happens if a class happens to contain more virtual methods?
On most achitectures, this case is protected by an assertion. If assertions are
turned off, the displacement of the load will just be trimmed to fit into the
maximal displacement bitsize. That in turn means that, if we call a virtual
method who’s entry fails to get loaded because of the displacement limitation,
a different method will be called.

To exploit this vulnerability, let’s suppose the displacement in the load
instruction is unsigned, and that it can be used to load a maximum of MAX
methods from the virtual function table. A class with MAX virtual meth-
ods is generated, each taking one word sized integer as argument and just
returning that argument followed by two methods with the signatures Object
intToObject(int i) and int objectToInt(Object o). If objectToInt is
called, its entry should be loaded from slot MAX + 1 of the virtual func-
tion table but after trimming the offset, the entry will be loaded from slot

13

27. - 30. Dezember 2007, Berlin

110 24C3

1 instead, where a method resides that reinterprets the object reference as
integer and just returns it. This way pointers can be converted to integers
and vice versa, bypassing the type system.

Once this type unsafe “casting” functions are available a fake object is
constructed like in section 14.4 with objectToInt used to get the addresses
of the arrays and intToObject used to “cast” the address of the fake object
to an Object. If calling some virtual method on this object pointer, controll
is passed to the shell code.

14

24. Chaos Communication Congress

Volldampf voraus! 111

27. - 30. Dezember 2007, Berlin

112 24C3

Konzeptionelle Einführung in Erlang

lecture

Hacking

2007-12-28 12:45

Saal 3

de
Stefan Strigler
BeF

A jump-start into the world of concurrent programming

Originally developed by Ericson, Erlang was eventually released as open source in 1998. Although
Erlang has been around for almost ten years now, it became a rather popular programming
environment for communication platforms only recently.The talk will equip the open-minded
programmer with concepts of concurrent programming in a functional programming environment
supported by real-world examples.Despite the fact that actual code fragments will be in display,
there is no need for novices and non-programmers to be scared away.

24. Chaos Communication Congress

Volldampf voraus! 113

Konzeptionelle Einführung in
Erlang
24C3

Ben Fuhrmannek <ben@fuhrmannek.de>
Stefan Strigler <steve@zeank.in-berlin.de>

Ziel des Vortrags ist es, einen kleinen Einblick in Erlang/OTP zu gewähren, allerdings weni-

ger in der Form "Wie programmiere ich was mit Erlang?" als eher eine Antwort auf Fragen

zu liefern wie "Was macht Erlang besonders, was kann es was andere Sprachen nicht oder

nicht so gut können?". Es soll mehr um den Einsatz von Erlang in der Praxis gehen, als eine

Einführung in das Arbeiten mit Erlang zu geben (sorry, kein 'Hello World' today).

HISTORIE

Erlang was created by the Computer Science Laboratory at Ellemtel (now Ericsson AB)

around 1990. It originates from an attempt to find the most suitable programming language for

telecom applications. Characteristics for such an application include:

•Concurrency - Several thousand events, such as phone calls, happening simultaneously.

•Robustness - An error in one part of the application must be caught and handled so that it

does not interrupt other parts of the applications. Preferably, there should be no errors at

all.

•Distribution - The system must be distributed over several computers, either due to the inher-

ent nature of the application, or for robustness or efficiency.

(Quelle: http://www.ericsson.com/technology/opensource/erlang/)

Open Source ist Erlang seit 1998. Die Sprache wurde nach dem dänischen Mathematiker Ag-

ner Krarup Erlang benannt, wobei die Doppeldeutigkeit mit Ericson-Language (ErLang)

gewollt ist.

� 1

27. - 30. Dezember 2007, Berlin

114 24C3

PROZESSORIENTIERTE PROGRAMMIERUNG

Joe Armstrong: "The world is parallel."

In Erlang besteht die Welt aus Prozessen, die mit einander Nachrichten austauschen. Dieses

Konzept ist für uns sehr leicht zu verstehen, denn wir agieren auf ähnliche Weise: Eine Am-

pel signalisiert grün, dann fahren wir los. Oder wir fragen die Auskunft nach einer Telefon-

nummer und sie wird uns genannt. Jede Person und jedes Objekt, das irgendwie interagieren

möchte, wird so einfach als Prozess abgebildet. Eine kleine Erweiterung zur Realität stellt die

Tatsache dar, dass Prozesse, die sich erwartet oder unerwartet beenden, noch die Ursache

preisgeben; z.B. eine Ampel fällt aus, dann sagt sie als Letztes noch 'Glühbirne durchge-

brannt'. Falls ein anderer Prozess sich dafür interessiert, dann kann die Ampel passend repa-

riert werden.

In der objektorientierten Entwicklung werden Daten als Objekte und Abläufe als Use-Cases

mit Methodenaufrufen von Objekten modelliert. In aktuellen Diskussionen wird das leider

allzu oft als Gegensatz aufgegriffen, was wohl daher rührt, dass klassische objekt-orientierte

Sprachen Parallelisierung nur mittels Threads unterstützen. Erlang dagegen aber keine Klas-

sen und Objekte kennt. Im Prinzip widersprechen sich die Ansätze aber nicht. So lassen sich

Prozesse auch als Objekte begreifen. In Python werden Methodenaufrufe sowieso Nachrich-

ten genannt und sind ohnehin von jeher konzeptionell dasselbe.

Threads teilen Speicher miteinander, dessen Zugriff zum Schutz vor Inkonsistenzen mit

Locks abgesichert wird. Sollte während eines bestehenden Locks ein Fehler auftreten, muss

explizit sichergestellt werden, dass das Lock wieder freigegeben wird, ansonsten wäre der

Programmablauf beim nächsten Zugriff auf das Lock gestoppt.

Erlang dagegen kennt keinen Shared-Memory und keinen globalen Variablen, sondern Pro-

zesse kommunizieren über Nachrichten.

SPRACHLICHE BESONDERHEITEN

•Erlang ist eine sequentiell1 funktionale2 Programmiersprache.

•Variablen können nur einmal assoziiert werden, z.B.

X = 1.
X = 2 (ERROR)

� 2

1 sequentiell: a, b, c

2 funktional: f(e(d()))

24. Chaos Communication Congress

Volldampf voraus! 115

und müssen vorher nicht deklariert werden. Es gibt keine globalen Variablen und keinen

von mehreren Prozessen gemeinsam genutzten Speicher.

•Die nahezu platformunabhängige Laufzeitumgebung (footnote: läuft unter Linux, ...) in-

terpretiert Byte-Code.

•Anstatt Threads gibt es Prozesse, die von der Laufzeitumgebung verwaltet werden und da-

her sehr leichtgewichtig (footnote: sowohl RAM als auch Startdauer) sind.

•Inter-Process-Communication (IPC) ist sehr einfach durch asynchrone Nachrichten ab-

bildbar, z.B.

Pid ! nachricht.

•Dabei stellt Pid eine Prozess-ID dar, die in einem verteilten System auch auf einen anderen

Erlang-Node verweisen kann.

•Erlang unterstützt Hot-Code-Replacement.

ERLANG OTP (OPEN TELECOM PLATFORM)

Äquivalent zu den Standardbibliotheken in anderen Programmiersprachen bietet Erlang die

Open Telecom Platform:

•große Bibliotheksklassen für den Programmiereralltag

•integrierte Anwendungen wie Mnesia (Verteiltes Datenbanksystem)

•vordefinierte Archtitekturmuster wie gen_server für Client-Server Architekturen oder

gen_fsm für endliche Automaten

•Debugging- und Deployment-Tools

WAS KANN ERLANG FÜR DICH TUN?

Erlang zeigt sein volles Potential, wenn ein oder mehrere der folgenden Kriterien besonders

wichtig sind:

Parallelisierung

z.B. typisch für Client-Server-Architektur und um Multi-Core-Systeme auslasten

Es folgt ein vergleichendes Beispiel mit vielen Prozessen/Threads mit Erlang, dann Python:

� 3

27. - 30. Dezember 2007, Berlin

116 24C3

-module(processes).
-export([max/1]).

max(N) ->
� Max = erlang:system_info(process_limit),
� io:format("Max. processes: ~p~n", [Max]),
� statistics(runtime), statistics(wall_clock),
� L = for(1, N, fun() -> spawn(fun wait/0) end),
� {_, Time1} = statistics(runtime),
� {_, Time2} = statistics(wall_clock),
� lists:foreach(fun(Pid) -> Pid ! die end, L),
� U1 = Time1 * 1000 / N,
� U2 = Time2 * 1000 / N,
� io:format("time for ~p processes: ~p/~p (runtime/real)~n", [N,
U1, U2]).

wait() ->
� receive
� � die -> void
� end.

for(N, N, F) -> [F()];
for(I, N, F) -> [F()|for(I, N-1, F)].

%% Beispiel aus 'Programming Erlang'

output:

1> processes:max(32000).
Max. processes: 32768
time for 32000 processes: 1.56250/3.71875 (runtime/real)

import sys,os
from threading import Thread, Lock

gl = Lock()
class TestThread(Thread):
� def run(self):
� � gl.acquire()
� � gl.release()

t1 = sum(os.times())

N = int(sys.argv[1])
threads = []
gl.acquire()
for i in range(N):
� t = TestThread()
� t.start()
� threads.append(t)

gl.release()
for t in threads:
� t.join()
t2 = sum(os.times())
print "elapsed cpu time: " + str(t2-t1) + "s"

� 4

24. Chaos Communication Congress

Volldampf voraus! 117

Skalierbarkeit durch Verteilheit (Cluster)

Verfügbarkeit durch Fehlertoleranz und Hot-Code-Replacement

99,999% Verfügbarkeit

KILLER-APPLICATIONS

Ejabberd

•High-Performance Jabber/XMPP-Server,

•clusterbar,

•Komponenten für JUD, Groupchat, IRC und PubSub integriert,

•Web-Administration,

•Leicht erweiterbar durch Erlang-Module (ejabberd-modules)

•In-House Benchmarks: Ein Node auf dual Xeon 2.8GHz und 8GB Ram bedient ca.

150.000 c2s Connections.

•MXit Südafrika betreibt Ejabberd-Cluster mit 4.8M registrierten User, 9M logins und

200M pro Tag.

Tsung

•Benchmark-Tool für HTTP und XMPP

•Clusterbar

Yaws

•High-performance Webserver für dynamischen generiertent Content

•embedable

KRITIK

•Useability der Dokumentation nicht auf der Höhe der Zeit - wer mit manpages umgehen

kann, kommt aber gut zurecht

•Community noch etwas unorganisiert

•Für Fragen, Hilfe, Support existiert (nur?) eine Mailingliste mit mittlerweile doch sehr ho-

hem Traffic. Dort schreiben aber eben auch Leute aus dem Ericsson Entwicklerteam sowie

Joe Armstrong selbst.

� 5

27. - 30. Dezember 2007, Berlin

118 24C3

GETTING STARTED

•Download und Doku unter [http://www.erlang.org http://www.erlang.org]

•Community-Site: [http://www.trapexit.org Trapexit]

LITERATUR

•Joe Armstrong, Robert Virding, Cleas

Wikström, Mike Williams: Concurrent

Programming in Erlang, Second Edition,

Prentice Hall, 1996

•Joe Armstrong: Programming Erlang -

Software for a Concurrent World, The

Programatic Programmers, 2007

•http://www.thinkingparallel.com/2007/

03/20/ten-questions-with-joe-armstrong

-about-parallel-programming-and-erlang/

Ten Questions with Joe Armstrong about

Parallel Programming and Erlang

•http://armstrongonsoftware.blogspot.co

m/2006/08/concurrency-is-easy.html

Concurrency is easy

•http://armstrongonsoftware.blogspot.co

m/2006/09/why-i-dont-like-shared-me

mory.html Why I don't like shared mem-

ory

•http://armstrongonsoftware.blogspot.co

m/2006/09/pure-and-simple-transactio

n-memories.html Pure and simple trans-

action memories

•http://weblogs.mozillazine.org/roadmap

/archives/2007/02/threads_suck.html

Threads suck

•http://en.wikipedia.org/wiki/Erlang_%

28programming_language%29 Wikipe-

dia: Erlang (programming language)

•http://de.wikipedia.org/wiki/Erlang_%

28Programmiersprache%29 Wikipedia

(de): Erlang (Programmiersprache)

•http://en.wikipedia.org/wiki/Declarativ

e_programming Wikipedia: Declarative

programming

•http://en.wikipedia.org/wiki/Functional

_programming Wikipedia: Functional

programming

•http://lambda-the-ultimate.org/node/25

33 Generative Code Specialisation for

High-Performance Monte Carlo Simula-

tions

� 6

24. Chaos Communication Congress

Volldampf voraus! 119

27. - 30. Dezember 2007, Berlin

120 24C3

Linguistic Hacking
How to know what a text in an unknown language is about?

lecture

Science

2007-12-28 16:00

Saal 2

en

Martin ‘maha” Haase

It is sometimes necessary to know what a text is about, even it is written in a language
you don't know. This can be quite problematic, if you do not even know in what language
it is written. This talk will show how it is possible to identify the language of a written
text and get at least some information about the contents, in order to decide whether a
specialist and which specialist is needed to know more.

The talk deals with the following issues:1 How to identify a language* texts in non-latin writing
systems and how the writing system can show what language we deal with,* how to identify
languages with the help of sample texts (based on a collection of sample texts compiled for this
purpose by Soviet linguists will be used),* tricks that help to make at least an intelligent
guess.2 How to get an idea about the contents of a text* identifying (important) content words
and grammar,* quick and dirty translations,* how to translate a text from a language you
hardly know.The talk will introduce a variety of means, ranging from pre-internet (and
pre-computational) approaches to contemporary web resources.

24. Chaos Communication Congress

Volldampf voraus! 121

Linguistic Hacking
How to know what a text in an unknown

language is about?

Martin.Haase@uni-bamberg.de

24th Chaos Communication Congress

It is sometimes necessary to know what a text is about, even it is written in
a language you don’t know. This can be quite problematic, especially if you
do not even know in what language it is written. This talk will show how it
is possible to identify the language of a written text and get at least some
information about the contents, in order to decide whether a specialist and
which specialist is needed to know more.

1 Introduction

In a first and rather brief outline, I will show how to identify the language of a written
text in traditional ways and with the help of computer technology. In the second part,
I will show how to get at least some information out of an unknown text. This is all
about linguistics, but what has it to do with hacking? I will show that some tricks must
be used to solve such problems and define hacking in this context according to Eric
Raymond’s seventh definition as “the intellectual challenge of creatively overcoming or
circumventing limitations.” [10, 234]

I will confine my analysis to written texts (not necessarily in Roman script), although,
based on a multi-language corpus of telephone calls [7], considerable progress has been
made in the identification of spoken languages [8]. The main reason for this omission
is that with spoken language it is far more difficult (and perhaps even impossible) to
get clues about the contents of a conversation without at least some knowledge of the
language in question.

2 How to identify a language

2.1 The traditional approach

If the text comes in a non-Roman and non-Cyrillic writing system, it is in most cases quite
easy to identify the script and the language, because exotic scripts are often language-

1

27. - 30. Dezember 2007, Berlin

122 24C3

Figure 1: Beginning of Genesis in Yiddish

specific. A handbook on writing systems [4] or web resources [1] can easily help to
identify a script and thereby the language.

There are some difficult cases of course. One such case is the Hebrew script which is
used for:

• Old and Modern Hebrew,

• Ladino (with different varieties),

• Judeo-Arabic,

• Yiddish

Of course, there are some simple tricks to distinguish between Hebrew and the other
languages. Normally, Hebrew is written without vowel diacritics (the little dots over
and under Hebrew letters). If your text shows no such signs, it is probably Hebrew.
If it contains such “vocalization signs”, it may still be Hebrew (a text from the Bible,
from a children’s book, or from learning material), but in that case the vocalization can
be consistently found throughout the text. If some words show (some) vocalization and
others don’t, it is most probably a Yiddish text, where Yiddish words contain a subset
of vocalization signs, but loan words from Hebrew are used without vocalization. Ladino
doesn’t contain super- or subscript diacritics at all. Moreover, Yiddish and Ladino texts
may contain Roman-script arabic numbers and Roman-script punctuation signs, but
sometimes even Hebrew texts contain western numbers. Figure 1 shows a Yiddish text
(few vocalization, Roman-script arabic numbers, Western punctuation), whereas figure 2
shows the same text from the Hebrew bible (with full vocalization), i. e. the beginning of
Genesis, the first book of the Bible (Hebrew numbering, full vocalization, non-Western
punctuation).

The problem gets worse when we turn to the Arabic writing systems. Variants are
used for about twenty different and partly unrelated languages (and more subvarieties)
and Modern Arabic itself has about thirty commonly used varieties. In order to get an
idea about the language, it is helpful to work with sample texts [1, 6].

The Cyrillic writing system is even worse, since it is used for more than sixty lan-
guages. Cyrillic writing systems for non-slavic languages were conceived mainly in the

2

24. Chaos Communication Congress

Volldampf voraus! 123

Figure 2: Beginning of Genesis in Biblical Hebrew

middle of the 20th century. When Cyrillic was adapted to different phonological systems,
additional letters were introduced that make it easy to identify a language, because every
writing system contains different special signs. That is why the identification of Cyrillic
languages is mainly done through the identification of character encoding.

2.2 Computer-aided language identification

There are three common techniques [11]:

1. frequencies of unique characters and character strings: this method, known from
cryptoanalysis, classifies documents by the frequency of unique characters and the
occurrence of typical character strings; a nifty variant of this approach consists in
measuring the compression efficiency that a program such as gzip achieves when
appending an unknown document to various reference documents. [3]

2. common words recognition: this method is based on word frequency lists (gener-
ated from sample texts), the unknown text is analyzed word by word and compared
to the list of the top 100 words (or so) of the sample texts;

3. n-gram analysis: this method works like common words recognition with the dif-
ference that (instead of words) sequences of n characters are used (2-character
sequences, 3-character sequences, etc.): if we split the word text into 3-grams, this
would be the result: (TE), (TEX), (EXT), (XT), denoting the word boundary.

These approaches all work according to the scheme in Figure 3: a document model is
generated from the input text in the unknown language and then this model is compared
to the existing models generated from sample texts.

The advantages and shortcomings of this procedure can be critically evaluated [5]:
the main drawbacks are that only a closed class of languages can be identified (dialects
and varieties of these languages are usually ignored), and normally, multilingual text
cannot be processed. If the programs work for non-Roman scripts, they usually reduce
the recognition of non-Roman script languages to the detection of the encoding which
doesn’t work if a writing system is used for several languages and if non-standard or
mixed character encodings are used.

Here is a list of free software readily available (and running) on the internet [5, 12, 13]:

3

27. - 30. Dezember 2007, Berlin

124 24C3

Figure 3: Language Identification Workflow [9]

• TextCat (http://odur.let.rug.nl/vannoord/TextCat/Demo/), an n-gram
based identification tool for 76 languages, usable as a web application,

• Languid (http://languid.cantbedone.org/), a downloadable program, the web
application is not running properly,

• Langid (http://complingone.georgetown.edu/∼langid/), a web-based identifi-
cation tool for 65 languages, based on n-gram analysis,

• LanguageGuesser (http://www.xrce.xerox.com/cgi-bin/mltt/
LanguageGuesser) provides for the web-based identification of about 40
languages, based on statistical methods (frequency tests on characters and
character sequences) [2],

• Polyglot 3000 (http://www.polyglot3000.com/), closed-source Windows free-
ware, identifying currently 441 languages, corpora and method are unknown.

3 How to get an idea about the contents of a text?

When we have identified the language of the text, it would be helpful to get an idea of
its contents before we try and find a specialist who can help us with the translation.
Perhaps the text is not interesting at all or has been translated before.

4

24. Chaos Communication Congress

Volldampf voraus! 125

A hacker’s approach to this task could be as follows:

• look for things you recognize without any help: numbers, dates, words from another
language; a number or a date can be a good hint; if it is a precise number or date,
a quick look-up with your preferred search engine might be helpful,

• look for typographic hints to important content: bold or italic print, colored or
underlined text chunks, capital letters (they may indicate names that you may
recognize or look up in Wikipedia).

Even with these steps you can get important hints about the contents of the text.
Moreover, the principle of least effort or Zipf’s law [14] can be very helpful to find

out what a text is about: Very frequent words are shorter and contain less lexical
information, whereas infrequent words are longer and contain more lexical information;
moreover, less lexical information implies more grammatical information and vice versa.
For our purpose, we are looking for words with more specific lexical information. So we
can ignore all short words, even if they reiterate throughout the text. A longer word
that is repeated is therefore more interesting. gagana Here is an example (from Samoan,
which is difficult to identify as such, since it is not contained in typical language sample
collections):

Ua salalau lenei gagana i le lalolagi atoa. ’O lenei fo’i gagana, ’ua ’avea ma gagana lona lua a le
tele o tagata ’o le vasa Pasefika, e pei ’o Samoa. E iai le manatu, ’o le gagana fa’aperetania,
’ua matuā talitonu i ai le tele o tagata Samoa e fa’apea ’o le gagana e maua ai le atamai ma le
poto. ’E talitonu fo’i nisi o i latou, ’e lē aoga la latou gagana. E lē sa’o lea tāofi, ’auā e ’avatu le
gagana fa’aperetania i Samoa, ’ua leva ona atamamai ma popoto tagata Samoa e fai lo latou

soifua ma lo latou lalolagi.

The interesting words in this text are gagana and fa’aperetania, perhaps latou too,
although this is short enough to be a more grammatical item. It is difficult to find
a Samoan dictionary, but a quick search reveals that fa’aperetania means ‘English’
(8th Google result) and gagana ‘language’ (11th & 13th Google hit); latou is more
difficult to find and less useful, since it is a third person plural pronoun (as the French
Wiktionary reveals). So the text is about the English language, probably in Samoa
(“gagana fa’aperetania i Samoa”).

The example shows that it is rather simple to get at least minimal information out of a
text whose language is unknown to us, even if we don’t have direct access to a translator
or a dictionary.

References

[1] Omniglot. Writing Systems and Languages of the World. http://www.omniglot.
com/ (2007-11-16).

5

27. - 30. Dezember 2007, Berlin

126 24C3

[2] K.R. Beesley. Language identifier: A computer program for automatic natural-
language identification of on-line text. Language at Crossroads: Proceedings of
the 29th Annual Conference of the American Translators Association, pages 12–16,
1988.

[3] D. Benedetto, E. Caglioti, and V. Loreto. Language Trees and Zipping. Physical
Review Letters, 88(4):48702, 2002.

[4] P.T. Daniels and W. Bright. The world’s writing systems. New York etc.: Oxford
University Press, 1996.

[5] B. Hughes, T. Baldwin, S. Bird, J. Nicholson, and A. MacKinlay. Reconsid-
ering Language Identification for Written Language Resources. eprints: http:

// eprints. infodiv. unimelb. edu. au/ archive/ 00001744 (2007-11-16).

[6] N.C. Ingle. Language Identification Table. London: Technical Translation Interna-
tional, 1980.

[7] Y.K. Muthusamy, R.A. Cole, and B.T. Oshika. The OGI multi-language telephone
speech corpus. Proceedings of the International Conference on Spoken Language
Processing, pages 895–898, 1992.

[8] Y.K. Muthusamy and A.L. Spitz. Automatic language identification. Cambridge
Studies In Natural Language Processing Series, pages 273–276, 1997.

[9] A. Poutsma. Applying Monte Carlo Techniques to Language Identification. Lan-
guage and Computers, 45(1):179–189, 2002.

[10] E.S. Raymond. The New Hacker’s Dictionary. Cambridge, Mass.: MIT Press, 1996.

[11] C. Souter, G. Churcher, J. Hayes, J. Hughes, and S. Johnson. Natural Language
Identification Using Corpus-Based Models. Hermes Journal of Linguistics, 13(S
183):203, 1994.

[12] G. van Noorden. Language Identification Tools. http://www.let.rug.nl/
∼vannoord/TextCat/competitors.html (2007-11-16).

[13] Wikipedia. Language Identification. http://en.wikipedia.org/w/index.php?
title=Language identification&oldid=139087517.

[14] G.K. Zipf. Human Behavior and the Principle of Least Effort: An Introduction to
Human Ecology. New York: Hafner, 1965.

6

24. Chaos Communication Congress

Volldampf voraus! 127

27. - 30. Dezember 2007, Berlin

128 24C3

Modelling Infectious Diseases in Virtual Realities
The "corrupted blood" plague of WoW from an epidemiological perspective

lecture

Science

2007-12-28 18:30

Saal 3

en

Florian

http://www.burckhardt.de/24c3_modelling_infdis_in_vr.pdf conference talk

World of Warcraft is currently one of the most successful and complex virtual realities.
Apart from gaming, it simulates personality types, social structures and a whole range of
group dynamics.

In 2005, courtesy of its creators at Blizzard Entertainment, the ancient Blood God "Hakkar the
Soulflayer" unleashed a devastating plague, "corrupted blood", upon a totally unprepared
population of avatars. Unintentionally, the digital "black death" spread to cities and depopulated
whole areas. The epidemic could only be controlled by shutting down and restarting the game
world, a measure unfortunately not available in the "real" world. However, other measures such as
quarantine or improved treatment are available in the real world and can be simulated by disease
modelling. Disease modelling is essentially a virtualisation of reality that tries to gain insights into
hitherto unknown inderdependencies and to simulate intervention scenarios.I will give a brief
overview of the use of infectious disease modelling in a population and explain the disease
dynamics of the "corrupted blood" epidemic in WoW. I will focus on cross references to the "real

24. Chaos Communication Congress

Volldampf voraus! 129

Modelling Infectious Diseases in Virtual Realities, by Florian Burckhardt 1/4

24C3: Modelling Infectious Diseases in Virtual Realities

The „Corrupted Blood" plague of World of Warcraft TM from an epidemiological perspective

by Florian Burckhardt, MSc Epidemiology

I will begin with a brief introduction to modelling diseases, describe how I modelled the „corrupted blood“

plague of the online game World of Warcraft and finish with a few ideas on future virtual epidemics.

Epidemiological modelling primer
SIR model
Epidemiology is the study of the pattern of disease in time, place and population. Very often, the goal is to

identify the underlying causative factors of disease. One of the early epidemiological successes was the

discovery by John Snow of contaminated water pipes as the underlying cause for the great London Cholera

epidemic in 1854. Another well known example is the link between smoking and lung cancer.

Infectious diseases as opposed to chronic diseases are somewhat unique in epidemiology because exposure

and outcome are the same: an infected person (or animal in case of zoonoses). This leads to non-linear

dynamics that make analysis and prediction of infections in a population very challenging.

One approach is to simulate the epidemic in a mathematical model that describes the relationship between

sick and healthy people in order to test different interventions.

There are many ways to design a model. Individual or agent based systems allow for single individuals with

their distinct characteristics like age, sex, contact pattern, risk taking and healthcare seeking behaviour, etc.

These "agents" are then put into a simulation and the spread of disease within the population of agents is

observed. Of course, all system parameters have to estimated from real world data, which can be very

difficult or in the words of J. Maynard Smith: „Describing complex, poorly-understood reality with a

complex, poorly understood model is not progress“.

Another modelling paradigm are compartimental models which divide the population into distinct

compartments of susceptible to disease (S), infectious (I) and recovered (R), where recovered are considered

to have acquired immunity. These SIR models (Kermack-McKendrick 1927) assume homogenous mixing

within the compartments, i.e. they imply that all susceptibles have the same probability to meet infectious.

This assumption is like most other modelling assumption always wrong, but what matters is the strength of

violation. In most cases, the SIR model and its variants are adequate.

The challenge with a SIR model is to estimate the flow between different compartments, most notably

between S(usceptibles) and I(nfetious), which will be explained in more detail. For simplicity, birth rate and

natural death rate are ignored (closed population).

Assuming homogenous mixing, the overall contact rate is c. Since we are only interested in contacting

infectious, we multiply with the proportion of infected I/N (where N=S+I+R = total population).

However, meeting with an infectious does not always result in an infection event. This only happens with a

transmission probability p. For tuberculosis for example, one would have to meet approximately 20

infectious people before contracting the disease whereas measles or Ebola have a transmission probability

close to one. The term p*c is also called „beta“ or "force of infection“.

So far, we have p*c*I/N which corresponds to the rate of transmission from infectious. The total

transmission rate in a population is the number of susceptibles S multiplied by that rate, finally yielding

p*c*I/N*S. N, p, c are constants, S and I are state variables and change with time, making the whole

system non-linear as mentioned above.

The "flow" from compartment I to R is simply the inverse of the duration of infectiousness (D), usually

called delta. For example, if one remains infectious for 10 days (D=10) and time is counted in days, then

1/10 per day (1/D) of I flows to R. However, compartment I also looses individuals due to death at the

disease specific death rate sigma. Here, sigma is set to zero.

Summing up, compartment S "looses" individuals at a rate of p*c*I/N*S, compartment I gains individuals

at that rate but looses individuals at rate delta to compartment R. Compartment R gains individuals at rate

delta.

These rates are put into a system of differential equations which are solved numerically by computer

programs such as Berkeley Madonna (http://www.berkeleymadonna.com/).

In formula (dS/dt means change of S over time, no birth rate, no natural or disease specific death rate):

27. - 30. Dezember 2007, Berlin

130 24C3

Modelling Infectious Diseases in Virtual Realities, by Florian Burckhardt 2/4

dS/dt = -p*c*I/N*S

dI/dt = p*c*I/N*S - delta*I

dR/dt = delta*I

The SIR model is suited for infections that generate immunity (R compartment). If immunity is lost with

time, one would use a SIRS model where the „waning immunity“ rate would determine the „flow“ from

compartment R to compartment S back again.

Most sexually transmitted infections such as syphilis, gonorrhoea or chlamydiasis but also the „winter

vomiting disease“ caused by Norovirus generate no or only partial immunity. S(usceptible) become

I(nfectious) and after curing the infection S(usceptible) again, resulting in a SIS model. Diseases such as

Hepatitis C or HIV (!condoms protect!) cannot be cured and leaves people I(nfectious), yielding a SI model.

The basic reproductive number R0
R0 („R naught“, „R zero“) is the average number of secondary infections from one single infected in a

totally susceptible population. This is the same as asking: „how many people does one infectious person

infect if everybody is susceptible ?“. If R0 is below one, the epidemic dies out.

R0 is the product of mean duration of infectiousness (D), contact rate (c) and transmission probability (p):
R0 = D*c*p

The concept of R0 allows to assess the impact of different epidemic interventions. Quarantine for example

reduces the contact rate whereas treatment would act on duration of disease and/or transmission probability.

Tamiflu for influenza e.g. shortens period of infectivity (D) and inhibits viral shedding (p). Wearing face

masks would inhibit spread of airborne infections (reduce p) and rigid hand hygiene would greatly reduce

any fecal oral transmission (reduce p).

Sometimes, interventions or social customs can also increase R0. If an intervention prolongs duration of

disease or increases p, the epidemic gets worse. For example, in the beginning of the SARS epidemic,

patients were treated with steam-nebulisers to ease breathing. However, additional aerosolisation of airborne

infections is really the last thing you need during an epidemic.

Corrupted Blood
Hakkar the Soulflayer
On September the 13th, Blizzard Entertainment released new gaming content for their acclaimed massively

multiplayer online roleplaying game, „World of Warcraft“ (WoW). For the sake of brevity, basic knowledge

about WoW is assumed.

A new map region called „Zul Gurub“ with a new challenging end-game opponent „Hakkar the Soulflayer“

were waiting for high level players. During battle, Hakkar cast a spell called „corrupted blood“ (CB) on a

random player that hit with severe damage once and additional smaller damage over time (DOT). DOT-spell

are not uncommon in Wow, however totally new was the ability of the spell to get „transmitted“ to nearby

players and their „pets“ (fighting companions). The spell was infectious. The original intention of the game

designers might have been to force players to spread over an area and thus let the infection run out by

eliminating contact between players. What happened was that once infected player teleported back to

populated cities or hunters (special classes) summoned back their infected pets, CB spread like the famous

black death and depopulated whole areas. Worse still, non player characters like in-game shopkeepers or

guards got infected as well. The game designers first tried to quarantine the disease but ultimately failed and

had to shut down the virtual world and reload it with a non-infectious version of CB. The CB-incident caught

a lot of media attention and fuelled discussion on using online games as epidemic simulators.

Modelling CB
First, it has to be said that any epidemiological modeller could have predicted the devastating effects of CB.

The basic reproductive rate R0 was so absurdly high, that any natural pathogen would have killed its host

population and thereby sealed its own fate: no host, no pathogen.

Model parameters usually have to be estimated from observational data. To the great dismay of the

epidemiological community, no observational data on CB incidence is available from Blizzard. However,

with a programmed disease like CB, parameters are available directly. Duration of the disease, providing

survival, was 10 seconds. Low and mid level players died after two hits by the disease that was 4 seconds.

Transmission probability was one, that is everyone in vicinity of an infectious got infected as well. Not even

24. Chaos Communication Congress

Volldampf voraus! 131

Modelling Infectious Diseases in Virtual Realities, by Florian Burckhardt 3/4

Ebola is that contagious. Contact rate depended on geographic location. In special WoW meeting places in

cities like the auction house, a contact rate of 5 players per second is not uncommon. Outside cities, contact

rate was lower.

Low/Mid Level Avatars

Death in WoW is non-permanent: killed players become ghosts on a graveyard and can eventually resurrect

later. In terms of modelling this translates into a SIRS model for low-mid level players: S(usceptibles)

become I(nfectious) and by „dying“ enter the R(ecovered) compartment, only to „resurrect“ and become

S(usceblible) again (fig. 1).

Figure 1: SIRS model

It might seem confusing to think of dead players as recovered, but in terms of disease modelling, they cannot

be infected while on the graveyard and are thus, for the sake of CB, recovered.

The graphs in fig. 2 illustrate the course of the epidemic with different contact rates.

A: one infected at start, contact rate 2/s, resulting in 85% of players wasting their subscription fee on the

graveyard with a slightly diminished in-game experience.

B: 500 infected at start, contact rate 1/5s, epidemic dies out because of R0= D*c*p=4*1/5*1, which is <1. In

words, each infected creates less than one secondary infection.

TIME
0 50 100 150 200 250 300 350

0

500

1000

1500

2000

2500

3000

Susceptible:1
Infected:1
Graveyard:1

Run 1: 17500 steps in 0.0167 seconds

TIME
0 5 10 15 20 25 30 35 40 45 50

0

500

1000

1500

2000

2500

Susceptible:1
Infected:1
Graveyard:1

Run 1: 2500 steps in 0 seconds

Figure 2: SIRS dynamics depending on contact rate. Susceptible black, infectious thin dotted, recovered

thick dotted

High Level Avatars

High level avatars survive CB. They “bounce” back between S(usceptible) and I(nfectious) and are

modelled using a SIS-model (fig. 3).

Figure 3: SIS model

BA

27. - 30. Dezember 2007, Berlin

132 24C3

Modelling Infectious Diseases in Virtual Realities, by Florian Burckhardt 4/4

The graphs in fig. 4 illustrate the course of the epidemic with different contact rates.

C: one infected at start, contact rate 2/s, resulting in 95% of players staying infectious.

D: 500 infected at start, contact rate 1/20s, epidemic dies out because of R0= D*c*p=10*1/20*1, which is <1

(D is 10 seconds and not 4 as in the SIRS cases A and B, as high level Avatars survive the full duration of

the spell).

TIME
0 5 10 15 20 25 30

0

500

1000

1500

2000

2500

3000

Susceptible:1
Infected:1

Run 1: 1500 steps in 0.0167 seconds

TIME
0 20 40 60 80 100 120

0

500

1000

1500

2000

2500

3000

Susceptible:1
Infected:1

Run 1: 6000 steps in 0.0167 seconds

Figure 4: SIS dynamics depending on contact rate; susceptibles black, infectious dotted

Better virtual epidemics
Game designers should take a few cues from nature when introducing infections in virtual worlds. A

transmission matrix with different transmission probabilities between races would allow more detailed

modelling of interspecies infections (why should an orc-virus infect elves and vice versa?). Transmission

could also depend on age and sex. And please note: transmission probability is never one, not even for Ebola

or Measles.

Recovery could be made time dependent, i.e. avatars stay infectious for a random length of time.

Introduction of immunity would limit the devastating effects that were seen with CB. Immunity could

gradually disappear thus simulating genetic changes in the infectious agent, which is seen with influenza.

Immunity would also add the possibility of biological warfare, if eg. immune Alliance players including one

infected would raid a susceptible orcish village. That strategy would mirror the distribution of smallpox

contaminated blankets to Native American Indians in the 19th century. Immunity would also add vaccination

as a service that might be synchronised with real-world flu-jabs.

Addition of an incubation period, where people are infected but not yet infectious, would more closely

resemble real diseases.

Transmission routes could vary as well: food-borne, airborne (droplet infection) or injury just to name a few

(with all those nasty cuts and flesh wounds in WoW, one wonders why there are not more wound

infections...).

Online avatars are probably in no danger of sexually transmitted diseases any time soon.

Links & References
- Short course on epidemiology of infectious diseases, http://www.imperial.ac.uk/cpd/epidemiology/

- The untapped potential of virtual game worlds to shed light on real world epidemics, Lofgren ET,

Fefferman NH, Lancet Infect Dis 2007; 7:625-29

- Berkeley Madonna, http://www.berkeleymadonna.com/

- Corrupted Blood, Wikipedia, accessed 16.11.2007, http://en.wikipedia.org/wiki/Corrupted_Blood

- Bapf the „Master Sergeant“

- presentation and paper available at http://www.burckhardt.de/docs.html

World of Warcraft is © by Blizzard Entertainment

C D

24. Chaos Communication Congress

Volldampf voraus! 133

27. - 30. Dezember 2007, Berlin

134 24C3

Overtaking Proprietary Software Without Writing Code
"a few rough insights on sharpening free software"

lecture

Society

2007-12-30 12:45

Saal 3

en

Olivier Cleynen

Free or "Open-Source" software, and in particular Linux, is doing extremely well technically.
However, it fails to secure a significant portion of the protected, lucrative software market,
especially for end-users. Can Free Software finally make a full entry into our society? The
main obstacles to overcoming the domination of proprietary software, most of them
non-technical, require thinking outside of code-writing. "Overtaking Proprietary Software

Pre-requisites are: A good understanding of the notion of Free/"open-source" Software and some
of the main themes that surround it, such as DRM. There is no particular technical knowledge
required.

24. Chaos Communication Congress

Volldampf voraus! 135

Overtaking Proprietary Software Without Writing Code
Proceedings for the 24C3

��������
This is a brief summary of a 45-min talk aimed at software developers, with the aim of giving rough
essential insights on how to overcome proprietary software. The key idea is that it is necessary to look
away from pure code writing, in order to strengthen free software enough that it overtakes proprietary
(non-free) software.

�	�
��
��	���
���������
A brief reminder that although free software outperforms proprietary products in many respects, it
still remains a minor player in the market. We develop the most stable, trustworthy, usable software in
the world, and yet we fail to get past the 1% mark almost everywhere.
Perhaps most telling is the success of Microsoft Vista, whose supposedly poor performance we love to
describe. In the first month of sales, Microsoft sold 20 million units. That's more Vista sales in one
month than there has been GNU/Linux users in ten years.
So it's possible that we lack something to make a difference, and clearly it's not “good software”.

�	�
���
����
	����
If we are to make a difference we have to solve or get around four problems.

1. Nobody chooses software
This fact is often forgotten because we typically are people who care so much about software that we
build our own. But in our society our consumer lives are getting so impossibly complicated (there is a
decision to make for just any purchase, from potatoes to batteries) that by the time they come home in
the evening people don't want to worry about software. We have to be already “inside” when Joe buys
his computer.

2. We'll never have a killer app
Because of the nature of free software, ideas and code flow quickly and we typically will never have a
killer application (they get ported too quickly). We continually forget about this, however, and keep
trying to build it anyway (ie. trying to make the perfect, ultimate unique application).

3. The legal environment is hostile
This is summed up in one sentence: in most countries you cannot play MP3s and DVDs with free
software, legally. The code is here but the patent/DRM laws prevent using it legally. Until this is
changed, free software will never make it to the shelves of any large-scale store.

4. The OS is disappearing
Because online services are typically well-designed, practical and sexy, we are losing hold of the
“real” operating system. There will always be software needed to run the PC chips, of course, but all
of the interesting software, with which we exchange ideas, produce work, and build our culture, is all
progressively being transferred to private servers. Just ask how many people in a room full of
developers regularly use Google apps, and how many use proprietary-software-devices to access some
kind of closed network (in their car, pockets, or living room).
Unless we put our focus out of personal-computer-centric software, we are at risk of missing this
change in computing trends.

27. - 30. Dezember 2007, Berlin

136 24C3

�	�
����
�����	���
	��
Making a real difference in the market means “tackling Joe”, the everyday user who has better things
to do than worry about the status of his software's code repository. Two points here:

1. Talk to Joe. The fact is our community is so much focused on software stability and choice,
that we shut ourselves on an entirely different planet. Perhaps insisting more on usability,
absence of viruses, and simple, easy choices (ie. killing Distrowatch) is the first thing to do.

2. Be relevant. Source code is the least of concerns for 95% of users out there. Speaking of “free
software” instead of “open-source” makes much more sense and does make a big difference
whenever the Joe has to make a decision.

Getting back to basics, speaking a language that is relevant to Joe, is the sole focus of GNU/Linux
Matters, a non-profit which aims to explaining Linux and free software to 1 million people in 2008.

�	�
���
����	�
������
The goal of this section is to introduce some “business-thinking” into software development. Because
our software is available at no cost, we fail to think in terms of market, customer expectation, or
segmentation.
On the proprietary side, knowing exactly what the consumers want and how much they are ready to
pay for it is a priority. The products then stem from this analysis (for example, the various Vista or
Photoshop versions).
In the free software world... we are often simply too busy forking to worry about what the users want.
This is because of The v0.12 Syndrome, whose symptoms are 1. A total dedication to quality (“the bug
tracker is the project”) 2. An agenda driven by the progression of the software (instead of the
opposite, ie, “it's released when it's ready”) 3. An overwhelming tendency to fork (whenever
somebody disagrees on how the code is written). The result: high quality, stable software that's
perpetually in a v0.12 state, and ten miles of altitude separating developers from users.
We'll start to break through when we realize that quality never has been a decision factor for the end-
user. For example, OpenOffice.org is bloated but seduced 100m users (and is a major player in
opening standards) because of good market analysis: being just like MS Office was the requirement
there. Similarly, the only difference between Firefox and the low-profile Mozilla suite was some wise
market analysis – a few cuts and some branding, not better quality, has made all the difference.

Concluding remarks:
Making a lasting dent into the overwhelming domination of proprietary software in the market does
not require writing better code. What we lack is better market analysis: a more tactical perspective in
the development of our projects, and a focus on what the users want. Giving up quality to work on
differentiation, and adapting to the online world are two of the biggest requisites for that.

Talk given by Olivier Cleynen from GNU/Linux Matters, CC-BY-SA 2007. To learn more about us,
visit http://www.gnulinuxmatters.org/ .

24. Chaos Communication Congress

Volldampf voraus! 137

27. - 30. Dezember 2007, Berlin

138 24C3

Simulating the Universe on Supercomputers
The evolution of cosmic structure

lecture

Science

2007-12-27 12:45

Saal 3

en

Mark Vogelsberger

http://www.mpa-garching.mpg.de/galform/presse/ Millennium Simulation done by the MPI for Astrophysics
http://www.ucolick.org/diemand/vl/ A recent NASA's Supercomputers Simulation
http://de.wikipedia.org/wiki/Millennium-Simulation Wikipedia entry for the Millennium Simulation

The evolution of structure in the Universe is one of the hottest topics in Cosmology and
Astrophysics. In the last years the so-called Λ-CDM-model could be established also
with great help of very large computer simulations. This model describes a Universe that
consists mainly of dark components: 96% are made of dark energy and dark matter.

Ordinary matter made up of baryons give only 4% to the total content of the Universe. The talk
will present recent results with the main focus on computational methods and challenges in that
field. A state-of-the-art computer code for running these calculations will be presented in detail.
The talk will describe recent progress in the field of cosmic structure formation and will mainly
focus on computational problems and methods carrying out such large simulations on the fastest
Supercomputers available today. At the end of the talk I will also briefly discuss a new method
we developed to access the dark matter structure in the Milky way to a scale that was just
impossible some month ago with current Supercomputers.To describe the evolution of the
Universe from the Big Bang to what we see today is a quite hard task. [...]

24. Chaos Communication Congress

Volldampf voraus! 139

Simulating the Universe on Supercomputers

Mark Vogelsberger, mark.vogelsbergerATemail.de

The following text is a very brief introduction into the field of cosmological Super-
computer simulations. Those who want to dig deeper into the field should consult the
references at the end.

1 The Universe

The goal of cosmological simulations is to model the growth of the structures in the
Universe. In other words, these simulations allow us to compress the long times of
cosmic evolution into a human lifetime and they can be considered as an experimental
tool to verify theories of the origin and the evolution of our Universe.

Today we believe that this evolution started with a Big Bang. Shortly after this
event small fluctuations were imprinted into the radiation and matter density field. To
understand the Universe, how it looks today, we need to know how these small per-
turbations to an otherwise homogeneous and isotropic space evolve with time. This
calculation is highly complex and can only be done numerically using large comput-
ers. Analytic methods can only be used in the linear regime but for the whole evolution
of the Universe numerical methods are needed. To run such cosmological simulations
one needs two main ingredients: first it is necessary to specify initial conditions, to tell
the computer where it should start to calculate. On the other hand one has to tell the
computer also how to calculate the evolution of the Universe. The initial conditions for
the simulation can be observed. How can we do this? We get the initial conditions from
the afterglow of the Big Bang. About 300.000 years after the Big Bang the radiation
could decouple. This radiation is still visible today. Due to the expansion of the Uni-
verse we can observe it today at an temperature of about 2.7 Kelvin. Modern satellite
missions could resolve small fluctuations in this radiation. From these fluctuations it
is possible to infer the perturbations in the initial density field of the matter. Thus we
know how the initial density field 300.000 years after the Big Bang looked like. This
is the input of our simulation. From this initial density field we have to evolve the
Universe from the starting point to today, about 13 billion years after the Big Bang.

The leading force for this evolution is gravity in an expanding space. Cosmolog-
ical codes use particles to trace the density field and evolve them under their mutual
gravity. As the simulation samples the smooth density field with such a finite set of
particles these computer simulations are called N-body codes. The more particles you
have the better the resolution you get. This is why there is a constant competition in
getting the highest number of particles and the computational resources you need to run
these calculations require the largest computers available today. I will focus here on the
simulation of the gravity only. This is by far the most important process and also the
easiest thing to simulate. Note that there is also baryonic gas in the Universe - we are
for example made out of baryons. Everything you can see like stars, galaxies, planets
and so on are made of baryons. Their dynamics is also influenced by hydrodynamics
and complicated gas physics. This is a lot more complicated to deal with. Modern sim-
ulation codes are also able to treat the baryons and compute a Universe with galaxies.

1

27. - 30. Dezember 2007, Berlin

140 24C3

They allow to form stars and solve the gas physics. The cosmological code Gadget
(Springel, 2005) that was developed at our institute is public available and can solve
both gravity and hydrodynamics. This is still quite restricted, because there are lots
of processes going on that need to be taken into account to get more realistic pictures:
black holes, cosmic rays, radiative transfer, magnetic fields and so. The current inter-
nal production version of the Gadget code has more than 200 options corresponding to
physical processes you can turn on or off. But the main evolution of cosmic structure
does not need gas physics. It can purely be calculated using the gravitational force in
an expanding Universe.

The fact that we can ignore the baryons for structure formation is because they
only make up four percent of the total energy content in the Universe. The largest mass
component comes from what is known as Dark Matter. It is called dark, because it does
not shine like stars or gas. It is invisible and therefore called dark. Today we know that
about 23 percent of the Universe are made up of this Dark Matter. Dark Matter only
interacts by gravitation. This is why we can indirectly observe it by its gravitational
interaction on visible objects like galaxies and gas. For example, Dark Matter can act
as a gravitational lens and can deflect light from visible galaxies. Besides baryons
and Dark Matter the largest component of the Universe consists of Dark Energy. In
Einstein’s equations of general relativity this corresponds to the so called cosmological
constant. Due to the small fraction of baryons in the Universe most simulations of
structure formation only take into account the dark components, so Dark Matter and
Dark Energy. Based on physical models and assumptions galaxies, stars and gas can
be added in a post processing by so called semi-analytic codes. These codes take the
output of the N-body simulations and use physical laws to infer the baryonic physics.
At the moment simulations start also to explore more and more the gas physics because
the relevant codes are good enough and available machines are fast enough to simulate
both gas and Dark Matter within one simulation.

Although we are very sure that there is Dark Energy and Dark Matter, we actually
do not know what these main components of the Universe are made of. Dark En-
ergy is very mysterious and for Dark Matter we have some particle candidates that are
well motivated from particle physics. These are particles that are beyond the Standard
Model of particle physics, like supersymmetric particles.

The fact that lots of structure formation simulations only take into account the
dark components means, that the simulation particles represent the Dark Matter density
field. Dark Matter behaves as a collisionless fluid and one needs to take some care to
model this correctly. Therefore every particle in the simulation is not treated like a
point source of a gravitational potential. The force is softened to avoid what is called
two-body relaxation. This is needed to preserve the collisionless character of the Dark
Matter fluid. One has to take into account one very important fact when representing
the Dark Matter density distribution by a discrete set of particles. These particles are
not real Dark Matter particles. Typical masses for some proposed Dark Matter particles
are in the range of 100 GeV. The mass of the particles in the simulation are in the range
of thousands of solar masses. It is totally impossible to simulate each Dark Matter
particle on its own. So to speak the particle distribution of the Dark Matter fluid is only
a Monte-Carlo representation.

After running the simulation its output can be statistically compared to observa-
tions. The important point is that both statistics show very good agreement. An agree-
ment of those statistics then proves that our model of structure formation that we have
put into the computer simulation is correct.

2

24. Chaos Communication Congress

Volldampf voraus! 141

2 Some details

Gravity is the dominant force at large scales. At the beginning of the Universe there
were small density perturbations. These were magnified by gravity during the evolu-
tion of the Universe. The main gravitational effect comes from Dark Matter, only at
smaller galaxy like scales baryonic physics has to be taken into account. To simulate
the Dark Matter one has to solve the equations for gravity in an expanding Universe.
Normally the expansion is taken into account by a tricky time integration scheme and
the coordinates in the simulation are so called comoving coordinates. These are the
physical coordinates rescaled by the current size of the Universe. The main challenge
for the force calculation lies in the long range 1/r2 character of the gravitational force.
The long range character implies that every particle in the simulation feels every other
particle. This results in N2 force interactions. Typical particle numbers for cosmo-
logical simulations that are required, are too high to solve this N2 problem. Without
clever techniques to reduce the N2 for these so called Particle-Particle methods (PP) it
is therefore impossible to run such a simulation. The PP method only works for quite
low number of particles. With special hardware it can also be used for higher number
of particles. So called GRAPE chips are specially designed to calculate the gravita-
tional force with an extreme speed. Using special hardware like this it is possible to
use PP methods also with higher number of particles. But this is still by far not enough
for cosmological structure formation applications.

A very common method to solve this problem is the Tree method. The idea is that
the force of a distant group of particles can be approximated by the force of the center
of mass force of that group. This approximation reduces the scaling of the number
of calculations from N2 to a lot better N log(N). The question is how to arrange the
particles in an efficient way. A good way is the so called Tree method. For that the
simulation volume is divided into smaller cubes with 1/8 the volume each at every
stage till the smallest cells have only one particle in them. The question for the force
calculation is then whether to open a cell, or whether it is fine to take a whole group for
the force calculation. Cells that are far away from the point of force evaluation do not
have to be opened. Nearby groups need to be opened. To decide on whether to open
or not is given by a so called acceptance criterion. This criterion in the end determines
the force accuracy you get.

Another very popular method to calculate the gravitational forces are so called
Particle-Mesh (PM) methods. In fact they were the first methods used to run larger
cosmological simulations. These methods use the fact that the Poisson equation rele-
vant for the gravitational forces is a simple algebraic equation in Fourier space. With
a Fast Fourier Transformation (FFT) the forces can be calculated very fast. The FFT
requires sampling functions at uniformly spaced points. A grid/mesh is used for this.
In the simulation particles are used for representing the density and velocity field. This
means that the density field at the mesh points has to be interpolated. The fact that
both particles and meshes are used in the simulation gives this technique its name. The
Fourier method has some advantages: it automatically implies periodic boundary con-
ditions, softens the forces at small scales because of the mesh resolution and the FFT
can easily be parallelised. These points are very important for cosmological simula-
tions. But PM methods have also very critical disadvantages: the softening on mesh
scales is very fine because softening is needed to simulate the collisionless Dark Matter
fluid, but this also means the the PM code cannot resolve scales below the mesh scale.
This is a very serious limitation of the dynamical range of PM simulations. An exten-
sion of classical PM methods are so called Adaptive Mesh Refinement (AMR) codes.
In these methods the grid is refined in higher density regions. This way the resolution
is increased where it is needed.

3

27. - 30. Dezember 2007, Berlin

142 24C3

Figure 1: Dark Matter density field. This is a slice through the Millennium Simulation
(see references). One can clearly see that the Dark Matter shows a filament like struc-
ture. There are also very dense and under dense regions. These under dense regions
correspond to very large voids in the Universe.

Another possibility to get rid of the low resolution on mesh scales is to combine
the mesh method with a particle based method. This means that the “bad” forces of
the mesh on small scales are corrected by a summation of the direct particle forces
for close neighbors. These methods are called PP + PM = P3M methods (Particle-
Particle plus Particle-Mesh). The direct summation of the PP part can also be replaced
by a Tree based method. These codes are then called hybrid codes. A very efficient
hybrid method is the TreePM method. It uses a force splitting between short and long
range force. The short range force is calculated with a Tree whereas the long range part
uses the PM method to calculate the forces.

The algorithm for the force calculation is only one problem in simulations. An-
other important issue is the so called domain decomposition strategy to divide the
work between lots processors. Cosmological simulations are often run with a num-
ber of processors of the order of 1000. The goal is to reach optimal load and memory
balance. There are different schemes around. The cosmological code Gadget uses a
fractal space-filling Peano-Hilbert curve as decomposition scheme.

Once all the forces are calculated the simulation can be advanced one time step.
The time integration algorithm that is mostly used is a quasi-symplectic leapfrog.

Cosmological simulations have to face lots of other technical issues like for ex-
ample I/O issues, because the data needs to be stored in parallel, because the typical
snapshot size is extremely large.

3 The Millennium Simulation

The Millennium Simulation is a project of the VIRGO consortium, a group of scientists
from Germany, UK, Canada, Japan and the USA. The focus of this international team
is to run large cosmological simulation and answer important questions by analyzing
the output of these runs. The Millennium Simulation was running for about a month

4

24. Chaos Communication Congress

Volldampf voraus! 143

on a 512 CPU cluster. After finishing the simulation lots of scientists started to analyze
it and they still do until today. The amount of data is very large and the simulation
gives us a perfect tool to test our models and see whether they are correct or not. The
simulation was done with the Gadget code. Fig. 1 shows one output of the simulation.
It is the Dark Matter density field of a slice through the simulation box.

4 Further reading

1. How to simulate the Universe in a Computer (Alexander Knebe)
http://arxiv.org/abs/astro-ph/0412565

2. Cosmological N-Body Simulations (J.S. Bagla, T. Padmanabhan)
http://arxiv.org/abs/astro-ph/0411730

3. Cosmological N-Body simulation: Techniques, Scope and Status (J.S. Bagla)
http://arxiv.org/abs/astro-ph/0411043

4. Millennium Simulation (Springel et al)
http://www.mpa-garching.mpg.de/galform/press/

5

27. - 30. Dezember 2007, Berlin

144 24C3

To be or I2P
An introduction into anonymous communication with I2P

lecture

Hacking

Tag 2 17:15

Saal 2

en

Jens Kubieziel

http://www.i2p.net/ I2P website

I2P is a message-based anonymizing network. It builds a virtual network between the
communcation endpoints. This talk will introduce the technical details of I2P and show
some exemplary applications.

I2P has a different approach than most other known anonymous applications. Maybe you know
about the anonymisation networt Tor. Here you have central directory servers, onion routers
(relaying traffic), onion proxies (send and receive data from the user) and other software roles
within the network. I2P calls every software a router and it can send and receive data for the
user as well as relay traffic for other users. Furthermore I2P uses no central server for
distributing information about routers. You'll get the information from I2P's network database.
This is a pair of algorithms which share the network metadata. The routers participate in the
Kademlia algorithm. It is derived from distributed hash table.My talk will tell you in detail how I2P
work, what roles routers, gateways, netDb etc. plays. Furthermore I'll show differences and
similarities to other anonymizing networks e. g. Tor and introduce some exemplary applications.

24. Chaos Communication Congress

Volldampf voraus! 145

An Introduction to Anonymous Communication with I2P

To be or I2P

Jens Kubieziel <jens@kubieziel.de>

2007-12-27

Abstract Many of you may know about Tor or JonDo. These are widely deployed
anonymising systems. Another promising approach is I2P. This paper will show the
basic concepts of this network and introduce some applications.

1 Introduction

Anonymous communications are getting
more important nowadays. On the one
hand are companies which try to invade
your privacy by using several well-known
techniques (i. e. Cookies, JavaScript).
These are used to build individual profiles
of your behaviour and to send you bet-
ter crafted spam. � The government, on
the other hand, creates laws (e. g. the data
rentention law) designed to help improve
law enforcement. But they can easily be
abused to spy on you. And several “inter-
ested third parties” have declared a strong
interest in the data gathered in this way.
Therefore users see an increased need for
protection against traffic analysis.

At past Chaos Communication Con-
gresses, several solutions have been pre-
sented. There were remailers like Mixmas-
ter1 or Mixminion2 as well as the anony-
mous network Tor3 introduced. One in-

1http://mixmaster.sourceforge.net/
2http://mixminion.net/
3https://www.torproject.org/

teresting approach has however not yet
been mentioned. The I2P4 anonymous
network tries to build VPN-like connec-
tions between its participants using a P2P-
approach. The following document will
give you a short overview of I2P. If you
want a more detailed view of I2P’s work-
ing principles have a look at the docu-
ments at the above mentioned website.

2 Nomenclature

I2P uses a special nomenclature for some
parts of their protocol. To better under-
stand the following it is important to know
about it.

router Software which participates in the
network.

tunnel A path through several routers
which is used to transport encrypted
packets.

inbound and outbound tunnel Every tun-
nel in I2P is unidirectional. The tunnel

4http://www.i2p.net/

1

27. - 30. Dezember 2007, Berlin

146 24C3

for incoming connections is called the
inbound tunnel and the one for out-
going connections is called the out-
bound tunnel. A router usually has
several inbound and outbound tun-
nels.

tunnel gateway This collects messages,
does some preprocessing, encrypts
the data and sends it to the next
router. A gateway of an outbound
tunnel is the creator of that tunnel.
The gateway of an inbound tunnel re-
ceives messages from any peer and
forwards them until they reach the
creator.

endpoint The endpoint of a tunnel is ei-
ther the creator (inbound) or the last
hop of that tunnel (outbound). In the
case of an outbound tunnel the end-
point is not necessarily the desired lo-
cation. In fact, the endpoint looks for
another tunnel gateway to send the
packets along.

netDb is the short name for network
database. It is a pair of algorithms
which are used to share the network
metadata. It gives your router all nec-
essary data to contact other routers.

As you can see there is no client, server
or exit nodes—in I2P every router can be
client and server. It forwards packets from
your computer as well as for other com-
puters. Furthermore all communication
stays within the I2P-network5 and is end-
to-end encrypted. A router doesn’t know
about its role and as the message is en-
crypted it has no possibility of learning
about its contents.

5There are proxies for non-I2P communication.

3 Anonymous communication
with I2P

What happens exactly if Alice wants to
send a message to Bob? First, Alice’s
router must know how to reach Bob’s.
She asks the netDb for Bob’s leaseSet.
This is special metadata and gives Alice’s
router the gateways of Bob’s inbound tun-
nels plus other information. Now Alice
picks one of her outbound tunnels and
sends it. The message has instructions
for Alice’ endpoint on how to forward
the message to Bob’s inbound gateways.
The endpoint forwards the message as re-
quested and Bob’s gateway forwards it to
Bob’s router. If a reply from Bob to Alice’s
message is desired, Alice’s destination is
also sent in her message, so saving Bob
from performing a netDb lookup.

This is the basic working principle of
I2P. The following sections will show you
details of I2P’s components.

3.1 netDb

The network database, called netDb,
shares network metadata consisting of a
pair of algorithms. First there is a small
set of routers called “floodfill peers”. The
rest of the routers participate in a special
algorithm, Kademlia.

3.1.1 Network metadata

There are two types of network metadata:
routerInfo and leaseSet.

The routerInfo structure supplies
routers with the data necessary for con-
tacting a particular router. It contains their
public keys (2048 bit ElGamal, 1024 bit
DSA plus a certificate), the transport ad-
dress (IP address and port) and some arbi-
trary uninterpreted text options. All of this

2

24. Chaos Communication Congress

Volldampf voraus! 147

information is signed with the included
DSA key.

The other structure leaseSet is similar
in some ways. It also contains the public
keys (ElGamal, DSA and certificate) and
includes a list of leases and a pair of public
keys for encrypting messages to the desti-
nation. The leases specify one of the des-
tination inbound tunnel gateways. This is
achieved by including the SHA-256 hash
of the gateway’s identity, a 4 byte tunnel
id and the expiration time of that tunnel.

3.1.2 Bootstrapping

How is the netDb initially built? A
router needs at least one routerInfo of
a reachable peer. It then queries that peer
for references for other routers and uses
the Kademlia healing algorithm. Each
routerInfo reference is stored in an in-
dividual file in the router’s netDb subdi-
rectory. This allows these references to be
easily shared, so bootstrapping new users.

3.2 Tunnels

As described above tunnels are unidirec-
tional and consist of an inbound and an
outbound tunnel. Both work along sim-
ilar principles. They have a gateway, an
endpoint and (probably) some routers in-
between. The gateway collects messages
and performs some preprocessing. After
these initial steps it encrypts the data and
sends it to the first router in the tunnel.
All subsequent routers check the integrity
of the message and add a layer of encryp-
tion. At some point the message arrives at
the endpoint, where it is forwarded as re-
quested.

4 Applications

As you have seen I2P is an anonymous
IP layer. What applications could you
use with I2P? The developers have im-
plemented several commonly-used pro-
grams. At the moment, programs for mail,
websites, chat, filesharing and more ex-
ist. For most of these tasks, special pro-
grams are needed as commonly available
software has no support for I2P.

4.1 Websites

Websites in I2P are called eepsites and have
the top level domain .i2p. To visit an eep-
site, point your browser’s proxy to port
4444. Your local I2P client handles the re-
quest. Unlike Tor’s hidden services, all
eepsites use readable names. You can
reach the eepsite of I2P via http://www.
i2p/ and I2P’s forum at http://forum.
i2p/.

If you want to provide information at
your own eepsite, you must follow several
steps:

1. pick a lowercase name for your eep-
site

2. start the eepsite at your I2P configura-
tion window and configure it

3. add content to
i2p/eepsite/docroot

4. add your site to an I2P address book
(http://orion.i2p/ or http://
trevorreznik.i2p/)

5. wait for your first visitor �, addition-
ally you can make your site public by
posting to the forum, to the wiki or
telling others about it in IRC

Additionally you can browse to web-
sites outside of I2P. Just set your local

3

27. - 30. Dezember 2007, Berlin

148 24C3

HTTP proxy to localhost with port 4444
and enter “normal” domain names.

4.2 Email

For email there is a web interface or
you can also use your mail client.
An email address in i2p has the form
username@mail.i2p. The username
can be freely chosen. Just go to the Post-
man HQ6 and create a new mailbox. This
site also has instructions on how to setup
your mail client. Once you are ready, you
can send emails. Another way to send
your emails is to use the web interface
called Susimail. Just log on with your
username and password.

You can also use I2P to communi-
cate with the outside world. I2P mail
can connect to an internet mail server7

where it rewrites your email address with
username@i2pmail.org. The receiver
can answer it. The mail server will restore
the domain name to mail.i2p and for-
ward it to your mailbox.

4.3 Blogging

Syndie is a censor resistant, anonymous
blogging tool. You can write postings
which are then published on your local pc
and on distributed archives. The software
is not part of the I2P distribution. It can
be downloaded from http://syndie.
i2p/ and, like I2P, is written in Java. Af-
ter installation is finished, the software has
to be configured. If you only want to read
other postings, you can subscribe to the fo-
rum. In case you also want to publish blog
postings, more work must be done. First
choose a nickname, then choose how Syn-
die connects to archive servers and in the

6http://hq.postman.i2p/
7mx.i2pmail.org

end add any desired forums. Syndie con-
tains a button labelled Post. Click on it
and write your postings.

4.4 Chat

The main chat protocoll is IRC. Point your
chat client to localhost with port 6668 and
choose a channel.

4.5 File sharing

There are several clients for several net-
works. I2PSnark is bundled with I2P
and offers you access to Bittorrent. Fur-
thermore the developers of Azureus have
written azneti2p, which is also a Bittor-
rent client. I2Phex is a port of the Phex
Gnutella client and, lastly, IMule allows
access to eMule.

4

24. Chaos Communication Congress

Volldampf voraus! 149

27. - 30. Dezember 2007, Berlin

150 24C3

VX
The Virus Underground

lecture

Culture

Tag 1 23:00

Saal 3

en

SkyOut

http://vx.netlux.org/ http://vxchaos.official.ws/ http://www.rrlf.de.vu/
http://www.smash-the-stack.net http://www.freewebs.com/purgatory-vx/ http://www.doomriderz.co.nr/
http://www.eof-project.net/ http://vx.eof-project.net/ http://vxchaos.official.ws/
http://vx.netlux.org/ http://www.29a.net/

The listeners will be introduced in the world of virus coding. They will understand how this
can be seen as a way of expressing yourself and why it is a way of hacking. Furthermore
they will get to know, which important groups, authors and viruses have been there in the
last years and which are still active nowadays. Important technical terms will be explained
as well as trends of the last years and the future.

The aim of the lecture shall be to introduce to the world of the virus underground. They shall
understand how this little community of about fifty people think and act and why they code
viruses. The audience may understand coding of viruses as a type of hacking and a way of
expressing it as art. Furthermore it is the aim to make them familiar with different words, that
are typically used by Virus Coders (VX), for example Appender, Prepender and Overwriter Virus.
Even more different aspects of multiplatform malware and payloads shall be explained. Then the
audience shall be introduced to different authors and groups of the scene, that are somehow the
idols of many VXers, groups like EOF, DoomRiderz and more. People like Roy G Biv, Virusbuster
and Benny and more. Going on, the lecture will describe the relationship between VXers and the
AntiVirus companies, even it does not seem so, there is a connection between both groups. [...]

24. Chaos Communication Congress

Volldampf voraus! 151

27. - 30. Dezember 2007, Berlin

152 24C3

24. Chaos Communication Congress

Volldampf voraus! 153

27. - 30. Dezember 2007, Berlin

154 24C3

24. Chaos Communication Congress

Volldampf voraus! 155

27. - 30. Dezember 2007, Berlin

156 24C3

24. Chaos Communication Congress

Volldampf voraus! 157

27. - 30. Dezember 2007, Berlin

158 24C3

24. Chaos Communication Congress

Volldampf voraus! 159

27. - 30. Dezember 2007, Berlin

160 24C3

24. Chaos Communication Congress

Volldampf voraus! 161

27. - 30. Dezember 2007, Berlin

162 24C3

24. Chaos Communication Congress

Volldampf voraus! 163

27. - 30. Dezember 2007, Berlin

164 24C3

Wahlchaos
Paradoxien des deutschen Wahlsystems

lecture

Society

2007-12-29 14:00

Saal 2

de

Markus Schneider

http://univis.uni-magdeburg.de/form?__s=2&dsc=anew/lecture_view&lvs=fgse/ipw/zentr/psy_0&an
onymous=1&founds=fgse/ipw/zentr/psy_0,fma/iag/zentr/comput,/linear,/mab,/oberse&nosearch=1&
ref=main&sem=2006s&__e=

Seite des Seminars aus dem Universitätsinformationssystem

Wahlchaos beschäftigt sich mit Wahlverfahren aus mathematischer und politischer Sicht. So
wurden die Wahlen von 1998, 2002 und 2005 betrachtet und a-postpriori manipuliert und
ihre Auswirkungen diskutiert.

Wir haben mit "Stimmstörungstheorie der Bundestagswahl" verschiedene Szenarien betrachtet
und einige Paradoxien unter die Lupe genommen. Genauer werden Themen wie
Zuteilungsverfahren, Überhangmandate, Erst- und Zweitstimmen, Wahlkreisreorganisation
betrachtet.Außerdem wird die Frage analysiert, wo und wie viele Stimmen man ändern muss, um
einen Patt bei der Regierungsbildung zu erreichen.

24. Chaos Communication Congress

Volldampf voraus! 165

27. - 30. Dezember 2007, Berlin

166 24C3

Q := Parteistimmenzahl
Gesamtstimmenzahl · Gesamtsitzzahl

�Q�
Q−�Q�

SP N1, N2, N3, . . .
SP

Ni

Ni

Ni = i Ni = 2i − 1

• M
Q |Q − M | ≤ 1

•

24. Chaos Communication Congress

Volldampf voraus! 167

•

•
•

•
•

27. - 30. Dezember 2007, Berlin

168 24C3

24. Chaos Communication Congress

Volldampf voraus! 169

4
614 · 47.194.062 ≈ 310.000

70.500

•
•
•
•

27. - 30. Dezember 2007, Berlin

170 24C3

•

•

•

24. Chaos Communication Congress

Volldampf voraus! 171

27. - 30. Dezember 2007, Berlin

172 24C3

Volldampf vorraus!
24. Chaos Communication Congress

Veranstaltungen

24. Chaos Communication Congress

Volldampf voraus! 173

Tag 1 - Saal 1

Tim Pritlove

Opening Event

lecture CommunitySaal 1 en

Welcome to the Congress!

2007-12-27 10:30

Welcome Keynote

SkyTee, Jens Ohlig, Ingo Schwitters, Sebastian Velke

Steam-Powered Telegraphy

lecture MakingSaal 1 en

We have built and modified a steam-powered Telex machine and connected it to the new-fangled invention for modern telegraphy known as "the
Internet". We will present this steampunkish invention in form of a lecture, thus hoping to enlighten interested ladies and gentlemen on the principles of
steam engine physics, 5-bit Baudot encoding, and historic telegraphy in general.

2007-12-27 11:30

Wherein a League of Telextraordinary Gentlemen present the marvel of Telex on the global Internet -- driven by a steam engine

Constanze Kurz, Andreas Bogk

Der Bundestrojaner

lecture SocietySaal 1 de

Der Bundestrojaner wird von der politischer, juristischer und technischer Seite beleuchtet.

2007-12-27 12:45

Die Wahrheit haben wir auch nicht, aber gute Mythen

Julius Mittenzwei, Erdgeist

TOR

lecture SocietySaal 1 de2007-12-27 14:00

Rop Gonggrijp

It was a bad idea anyway...

lecture SocietySaal 1 en

2007 has been yet another a turbulent year in The Netherlands with regard to electronic voting. If you remember the presentation at 23c3, 2006 saw the
emergence of a campaign against the use of non-auditable voting systems.

2007-12-27 16:00

The demise of electronic voting in The Netherlands

Frank Rieger, Constanze Kurz

NEDAP-Wahlcomputer in Deutschland

lecture SocietySaal 1 de

Wir bringen Euch auf den neuesten Stand,
was den Einsatz der NEDAP-Wahlcomputer in Deutschland betrifft.

2007-12-27 17:15

Anna H.

Was ist eigentlich Terrorismus?

lecture SocietySaal 1 de2007-12-27 18:30

Und wer terrorisiert hier eigentlich wen?

ladyada

Design Noir

CultureSaal 1 en

http://www.ladyada.net/make/wavebubble/
http://www.ladyada.net/make/tvbgone/
http://www.ladyada.net/pub/research.html

In contemporary Western society, electronic devices are becoming so prevalent that many people find themselves surrounded by technologies they find
frustrating or annoying. The electronics industry has little incentive to address this complaint; I designed two counter-technologies to help people defend
their personal space from unwanted electronic intrusion. Both devices were designed and prototyped with reference to the culture-jamming "Design Noir";
philosophy. The first is a pair of glasses that darken whenever a television is in view. The second is low-power RF jammer capable of preventing cell phones
or similarly intrusive wireless devices from operating within a user's personal space. By building functional prototypes that reflect equal consideration of
technical and social issues, I identify three attributes of Noir products: Personal empowerment, participation in a critical discourse, and subversion.

2007-12-27 20:30

The seedy underbelly of electronic engineering

27. - 30. Dezember 2007, Berlin

174 24C3

Ilja

A collection of random things

lecture HackingSaal 1 en

random things I'll cover - using oob data to bypass ids - /dev/[k]mem race conditions in suids- tcp fuzzer that goes beyond the 3-way handshake- ...

2007-12-27 23:00

look what I found under the carpet

Johannes Grenzfurthner

"I can count every star in the heavens above

lecture CultureSaal 1 en

A talk (with examples) by monochrom, presented by Johannes Grenzfurthner

2007-12-27 00:30

Computers as a thankful subject in pop music

Tag 1 - Saal 2

Rose White

The Role of Brilliant Deviants in the Liberalization of Society

lecture CommunitySaal 2 en

I'm planning to look at how hackers and other "folks like us" get the "real world" to let us be crazy deviants, and continue to pay us anyway. Clearly not
everyone is able to do this -- hence the sort of person who says, "I'd love to [go to Burning Man] [blow things up] [dress eccentrically]" but never does
any of it. But some of us *are* able to get the world to play along, and I am looking at that from a sociological point of view.

2007-12-27 11:30

How People Like Us Make People Like Them Accept Us

Antoine Drouin, martinmm

Paparazzi - The Free Autopilot

lecture MakingSaal 2 en

http://paparazzi.nongnu.org/ Paparazzi Project Page

Autonomous unmanned aerial vehicles are becoming more and more popular as suitable electronics and sensors are available and affordable. This talk will
describe Paparazzi, a complete system enabling you to build and control your own UAV.

2007-12-27 12:45

Build your own UAV

Leon Hempel

Verteilte Sicherheit

lecture ScienceSaal 2 de

Die Integration visueller Überwachungssysteme sowie die Verknüpfung militärischer und nicht-militärischer Verwendungen der Technologien verläuft
schleichend, aber stetig.

2007-12-27 16:00

Zur Ordnung der Überwachung

Victor Muñoz

AES: side-channel attacks for the masses

lecture HackingSaal 2 en

http://www.ingenieria-inversa.cl/AES02.pdf AES: side-channel attacks for the masses

AES (Rijndael) has been proven very secure and resistant to cryptanalysis, there are not known weakness on AES yet. But there are practical ways to break
weak security systems that rely on AES.

2007-12-27 17:15

Cristian Yxen, Erdgeist, Denis Ahrens

Trecker fahrn

lecture HackingSaal 2 de

http://opentracker.blogs.h3q.com/ Das opentracker Blog
http://erdgeist.org/arts/software/opentracker Opentracker Projektseite

Bittorrent aus der Sicht derer, die die Infrastruktur machen und natürlich auch selber nutzen.

2007-12-27 18:30

Vom Gefühl, einen offenen Bittorrent Tracker zu fahren

24. Chaos Communication Congress

Volldampf voraus! 175

Maarten Van Horenbeeck

Crouching Powerpoint, Hidden Trojan

lecture HackingSaal 2 en

http://www.daemon.be/maarten/targetedattacks.html A brief introduction to targeted attacks

Targeted trojan attacks first attracted attention in early 2005, when the UK NISCC warned of their wide spread use in attacks on UK national
infrastructure. Incidents such as "Titan Rain" and the compromise of US Department of State computer systems have increased their profile in the last two
years. This presentation will consist of hard, technical information on attacks in the form of a case study of an actual attack ongoing since 2005. It covers
exploitation techniques, draws general conclusions on attack methodologies and focuses on how to defend against the dark arts.

2007-12-27 20:30

An analysis of targeted attacks from 2005 to 2007

Daniel Otte, Sören Heisrath

AnonAccess

lecture HackingSaal 2 de

http://www.das-labor.org/wiki/AnonAccess AnonAccess im Labor wiki
AnonAccess ist ein elektronisches System, welches anonymen Zugang nicht nur zu Hackerspaces ermöglicht.

2007-12-27 21:45

Ein anonymes Zugangskontrollsystem

Jeroen Massar

IPv6: Everywhere they don't want it

lecture HackingSaal 2 en

http://www.sixxs.net/tools/aiccu/ AICCU - Automatic IPv6 Connectivity Client Utility
http://www.sixxs.net/tools/ayiya/ AYIYA - Anything In Anything
http://www.sixxs.net/ SixXS - IPv6 Tunnel Broker and IPv6 Deployment
http://unfix.org/jeroen/ Jeroen Massar's homepage

This talk will discuss a new feature in AICCU which allows one to have IPv6 virtually everywhere, including most places where a lot of network operators will
not want to have it.

2007-12-27 23:00

Global connectivity even in the places that you are not supposed to have it

Tag 1- Saal 3

Gregers Petersen

Freifunkerei

lecture SocietySaal 3 en

The term Freifunk Firmware has found a place on the shelf's in the life of numerous people. It has become an immense knot of activities, not just sitting
silently like a dusty heirloom. "Freifunkerei"; has become an example of how DIY-cultures can act and re-create alternatives in a world which seems both
confronted and abandoned by the state.

2007-12-27 11:30

And a Do-It-Yourself society against the state.

Mark Vogelsberger

Simulating the Universe on Supercomputers

lecture ScienceSaal 3 en

http://www.mpa-garching.mpg.de/galform/presse/ Millennium Simulation done by the MPI for Astrophysics
http://www.ucolick.org/diemand/vl/ A recent NASA's Supercomputers Simulation
http://de.wikipedia.org/wiki/Millennium-Simulation Wikipedia entry for the Millennium Simulation

The evolution of structure in the Universe is one of the hottest topics in Cosmology and Astrophysics. In the last years the so-called Λ-CDM-model
could be established also with great help of very large computer simulations. This model describes a Universe that consists mainly of dark components:
96% are made of dark energy and dark matter.

2007-12-27 12:45

The evolution of cosmic structure

Lars Weiler, Jens Ohlig

Building a Hacker Space

lecture CommunitySaal 3 en

With the help of Design Patterns we will show you how to set up your own Hacker Space. The Design Patterns are based on more than 10 years of
experience with setting up and running a Hacker Space.

2007-12-27 14:00

A Hacker Space Design Pattern Catalogue

27. - 30. Dezember 2007, Berlin

176 24C3

Arien Vijn

10GE monitoring live!

HackingSaal 3 en

There are many open source tools available to do packet capturing and analysis. Virtually all networkers use these tools. However millions of packets per
seconds are just too much for general-purpose hardware. This is a problem as 10 Gigabit networks allow for millions of packets per second. The obvious
solution for that issue is to lower the data rates by filtering out 'uninteresting' data out before it gets processed by the general purpose computer
hardware.

2007-12-27 16:00

How to find that special one out of millions

Nils Magnus

Desperate House-Hackers

lecture HackingSaal 3 de

Wie funktionieren eigentlich diese Pfandflaschenrücknahmeautomaten? Wir finden es heraus.

2007-12-27 17:15

How to Hack the Pfandsystem

Mitch

Make Cool Things with Microcontrollers

workshop MakingSaal 3 en

http://www.tvbgone.com/cfe_mfaire.php Documentation for Projects
http://makezine.com/10/brainwave/ Brainwave Machine in MAKE

Learn how to make cool things with microcontrollers by actually making fun projects at the Congress -- blink lights, hack your brain, move objects, turn off
TVs in public places -- microcontrollers can do it all. Ongoing workshops each day of the Congress.

2007-12-27 18:30

Hacking with Microcontrollers

Thorsten Holz

Cybercrime 2.0

lecture HackingSaal 3 en

http://honeynet.org/papers/ff/ Fast-Flux Service Networks
http://honeyblog.org my blog

Not only the Web has reached level 2.0, also attacks against computer systems have advanced in the last few months: Storm Worm, a peer-to-peer based
botnet, is presumably one of the best examples of this progress. Instead of a central command & control infrastructure, Storm uses a distributed
communication channel based on Kademlia / Overnet. Furthermore, the botherders use fast-flux service networks (FFSNs) to host some of the content.
FFSNs use fast-changing DNS entries to build a reliable hosting infrastructure on top of compromised machines. Besides using the botnet for DDoS attacks,
the attackers also send lots of spam - most often stock spam, i.e., spam messages that advertize stocks. This talk presents more information about Storm
Worm and the other aspects of modern cybercrime.

2007-12-27 20:30

Storm Worm

Meike Richter

How to Reach Digital Sustainability

lecture SocietySaal 3 en

http://www.commonspage.net/ Blog of Meike Richter

Happy digital world: Everything is information, and it grows by sharing. Scarcity seems to be a problem of the "meatspace". On the internet, there is space
for everybody, for every activity and for every opinion. Really? This lectures explores the power of intellectual property rights and their impact on
everyday (digital) life. The net as we know it is in danger. What is needed to make it stay a resource which is valuable, open and free for everybody? How
could a concept of digital sustainability look like?

2007-12-27 21:45

The Impact of Intellectual Property Rights

SkyOut

VX

lecture CultureSaal 3 en

http://vx.netlux.org/ Virus database http://vxchaos.official.ws/ VX File Server
http://www.smash-the-stack.net Smash-The-Stack http://www.freewebs.com/purgatory-vx/ Purgatory Virus Team
http://www.eof-project.net/ EOF-Project http://vx.eof-project.net/
http://vx.netlux.org/ VX http://www.29a.net/ 29A Labs
http://www.rrlf.de.vu/ Ready Rangers Liberation Front http://vxchaos.official.ws/ VX CHAOS File Server
http://www.doomriderz.co.nr/ Doomriderz VX Team

The listeners will be introduced in the world of virus coding. They will understand how this can be seen as a way of expressing yourself and why it is a way
of hacking. Furthermore they will get to know, which important groups, authors and viruses have been there in the last years and which are still active
nowadays. Important technical terms will be explained as well as trends of the last years and the future. And more.

2007-12-27 23:00

The Virus Underground

24. Chaos Communication Congress

Volldampf voraus! 177

Tag 2 - Saal 1

Erik Josefsson

Data Retention and EURODAC

lecture SocietySaal 1 en

New EU legislation emphasises and in some cases creates new crimes of consumer infringement of intellectual property laws. Consumer Warnings about
consumers' requirements to respect copyright could become mandatory; worse, such infringement cases could move from civil cases to criminal ones across
the EU. But nowhere is there legislation either clarifying or defending consumers' rights under IP law, in our changing digital environment.

2007-12-28 12:45

The Brussels Workshop

Christian Kurtsiefer, Ilja Gerhardt, Antia Lamas

Quantum Cryptography and Possible Attacks

lecture ScienceSaal 1 en

http://arXiv.org/abs/0702152 A. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Physical Review Letters 98, 230501 (2007)
http://arxiv.org/abs/quant-ph/0606072 I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, Applied Physics Letters 89, 101122 (pages 3) (2006)
http://arxiv.org/abs/0704.3297 A. Lamas-Linares and C. Kurtsiefer, Optics Express 15, 9388 (2007)
http://quantumlah.org/ Center for Quantum Technologies, National University of Singapore

Quantum cryptography is the oldest and best developed application of the field of quantum information science. Although it is frequently perceived as an
encryption method, it is really a scheme to securely distribute correlated random numbers between the communicating parties and thus better described
as quantum key distribution (QKD). Any attempt at eavesdropping from a third party is guarantied to be detected by the laws of physics (quantum
mechanics) and shows up as an increased error rate in the transmission (the QBER).

2007-12-28 14:00

Michael Steil

Why Silicon-Based Security is still that hard: Deconstructing Xbox 360 Security

lecture HackingSaal 1 en

http://www.free60.org/ Free60 Project

The Xbox 360 probably is the video game console with the most sophisticated security system to date. Nevertheless, is has been hacked, and now Linux can
be run on it. This presentation consists of two parts.

2007-12-28 16:00

Console Hacking 2007

Constanze Kurz, Frank Rosengart, Andreas Lehner

Chaos Jahresrückblick

lecture CommunitySaal 1 de

Wir stellen die Aktivitäten des und Geschehnisse im Chaos Computer Club im abgelaufenen Jahr vor. Hierunter fallen sowohl die Kampagnen des CCC, die
Lobbyarbeit sowie Berichte und Anekdoten von Veranstaltungen innerhalb des CCC als auch Vorträge und Konferenzen, an denen CCC-Vertreter
teilgenommen haben.

2007-12-28 17:15

Ein Überblick über die Aktivitäten des Clubs 2007

FX of Phenoelit, fabs

Port Scanning improved

lecture HackingSaal 1 en

http://www.recurity-labs.com Who we are

Port-Scanning large networks can take ages. Asking yourself how muchof this time is really necessary and how much you can blame on theport-scanner,
you may find yourself integrating your own scanner intothe linux-kernel. Or at least we did.

2007-12-28 21:45

New ideas for old practices

Bre

DIY Survival

lecture MakingSaal 1 en

The apocalypse could happen any day. You're going to need things to survive and your going have to make them yourself.

2007-12-28 23:00

How to survive the apocalypse or a robot uprising

Andreas Bogk, tina, Erdgeist, nibbler

Rule 34 Contest

contest CultureSaal 1 en

Rule 34 says: there is porn of it. This contest will challenge the best and brightest to prove the rule under adverse circumstances in a race against the
clock.

2007-12-28 00:00

There is porn of it.

27. - 30. Dezember 2007, Berlin

178 24C3

Tag 1 - Saal 2

Anoushirvan Dehghani

Absurde Mathematik

lecture ScienceSaal 2 de

Ein kleiner Streifzug durch die Abgründe der Mathematik. Eigentlich ist der Mensch mit einer recht gut funktionierenden Intuition ausgerüstet. Dennoch
gibt es Paradoxa, welche mathematisch vollkommen korrekt und beweisbar sind, jedoch unserer Intuition widersprechen. Der Vortrag bietet einen
Streifzug durch einige dieser Paradoxa, die kurz und anschaulich erklärt werden.

2007-12-28 12:45

Paradoxa wider die mathematische Intuition

Vladsharp

After C: D, libd and the Slate project

lecture CommunitySaal 2 en

http://www.slate-project.org/res/os_2_0_talk.pdf Slides

We present libd, a high-level runtime for the D programming language and the Slate project, an attempt at a high-level OS and environment built upon
libd, as the next major step in improving the state of programming environments and operating systems. With high-level abstractions, and sensible
design, the state of implementation of open-source OSes can improve. We leverage existing kernels when implementing Slate, and put an extensive
(abstraction-oriented) architecture above the kernel to present the user (or programmer) with a system they can use by having to do less to perform a
specific function. Our virtual machine approach also allows for security verification on a level not seen in *nix OSes before.

2007-12-28 14:00

A clean slate for operating systems

Martin ‘maha” Haase

Linguistic Hacking

lecture ScienceSaal 2 en

It is sometimes necessary to know what a text is about, even it is written in a language you don't know. This can be quite problematic, if you do not even
know in what language it is written. This talk will show how it is possible to identify the language of a written text and get at least some information
about the contents, in order to decide whether a specialist and which specialist is needed to know more.

2007-12-28 16:00

How to know what a text in an unknown language is about?

Jens Kubieziel

To be or I2P

lecture HackingSaal 2 en

http://www.i2p.net/ I2P website

I2P is a message-based anonymizing network. It builds a virtual network between the communcation endpoints. This talk will introduce the technical
details of I2P and show some exemplary applications.

2007-12-28 17:15

An introduction into anonymous communication with I2P

Hannes

Automatic memory management

lecture ScienceSaal 2 en

http://www.cs.kent.ac.uk/people/staff/rej/gc.html Richard jones GC page
http://www.ravenbrook.com/project/mps/ Memory Pool System
http://www.hpl.hp.com/personal/Hans_Boehm/gc/ Boehm GC
http://www.research.ibm.com/people/d/dfb/papers/Vechev05Derivation.pdf Derivation and Evaluation of Concurrent Collectors
http://www.acmqueue.org/modules.php?name=Content&pa=showpage&pid=454 Realtime Garbage Collection
http://www.memorymanagement.org/ The Memory Management Reference

Since Java is widespread, automatic memory management is a commonly used technology. There are several approaches to memory management,
realtime, parallel, probabilistic algorithms. The lecture will give an overview of different algorithms and current research topics.

2007-12-28 18:30

Why should I care about something that a computer could handle better, anyway?

Rainer Fromm, Frank Rosengart

Spiel, Freude, Eierkuchen?

podium SocietySaal 2 de

http://www.zdf.de/ZDFde/inhalt/26/0,1872,2285338,00.html ZDF Frontal21: Gewalt ohne Grenzen
Der Journalist Rainer Fromm berichtet über seine Erfahrungen mit der Gamerszene, mit Filmbeispielen und anschließender Diskussion.

2007-12-28 20:30

DIe Gamerszene und ihre Reaktion auf kritische Berichterstattung

24. Chaos Communication Congress

Volldampf voraus! 179

lucy

Inside the Mac OS X Kernel

lecture HackingSaal 2 en

Many buzzwords are associated with Mac OS X: Mach kernel, microkernel, FreeBSD kernel, C++, 64 bit, UNIX... and while all of these apply in some way,
"XNU", the Mac OS X kernel is neither Mach, nor FreeBSD-based, it's not a microkernel, it's not written in C++ and it's not 64 bit - but it is UNIX... but just
since recently.

2007-12-28 21:45

Debunking Mac OS Myths

Ralph Kusserow, Christine Ketzer, Yvette Krause

Das Panoptische Prinzip - Filme über die Zeit nach der Privatsphäre

movie SocietySaal 2 de

http://www.panoptisches-prinzip.de/ Das panoptische Prinzip

In den letzten Jahrennicht zuletzt seit dem 11. Septemberist es zu einem Abbau von Bürgerrechten und einer immer umfassender werdenden Überwachung
seitens des Staates, aber auch der Wirtschaft gekommen. Erkennungsdienstliche Verfahren wie z. B. die Abnahme von Fingerabdrücken oder andere
biometrische Verfahren, treffen zunehmend auch Normalbürger. Das rechtsstaatlich garantierte Paradigma der Unschuldsvermutung wird demontiert:
Jeder ist potenziell verdächtig.

2007-12-28 23:00

Ergebnisse des Minutenfilmwettbewerbs des C4 und des Kölner Filmhauses

Tag 2 - Saal 3

Bianca Drefahl

Computersimulationen als Prognose- und Planungsinstrumente

lecture ScienceSaal 3 de

Mit den computertechnologischen Entwicklungen seit Mitte des 20. Jahrhunderts rückte ein alter Traum der Menschheit in greifbare Reichweite:
kalkulierbare Zukünfte. Die stetige Steigerung an Rechnergeschwindigkeit, Speicherplatz und Verarbeitungspotential erlaubt es, am Computer
Experimente virtuell mit quasi-empirischen Charakter ablaufen zu lassen und visuell eindrucksvoll zu inszenieren.

2007-12-28 11:30

Grenzen und Möglichkeiten kalkulierbarer Zukünfte und dynamischer Planspiele

Stefan Strigler, BeF

Konzeptionelle Einführung in Erlang

lecture HackingSaal 3 de

A jump-start into the world of concurrent programming

2007-12-28 12:45

Simon Wunderlich, Marek

Wireless Kernel Tweaking

lecture HackingSaal 3 en

http://www.open-mesh.net www.open-mesh.net

Kernel hacking definitely is the queen of coding but in order to bring mesh routing that one vital step further we had to conquer this, for us, unchartered
territory. Working in the kernel itself is a tough and difficult task to manage, but the results and effectivity to be gained justify the long and hard road
to success. We took on the mission to go down that road and the result is B.A.T.M.A.N. advanced which is a kernel land implementation of the B.A.T.M.A.N.
mesh routing protocol specifically designed to manage Wireless MANs.

2007-12-28 14:00

or how B.A.T.M.A.N. learned to fly

Markus Beckedahl

23 ways to fight for your rights

lecture SocietySaal 3 de

http://www.netzpolitik.org netzpolitik.org

Bürgerrechtsabbau steht auf der Tagesordnung. Bei der Vielzahl an Vorhaben und Gesetzesinitiativen haben viele mittlerweile das Gefühl, dass sich
politisches Engagieren nicht mehr lohnt.

2007-12-28 16:00

Wie man sich selbst mit den eigenen Stärken für unsere Bürgerrechte einsetzen kann

Peter Molnar, Roland Lezuo

Just in Time compilers - breaking a VM

lecture HackingSaal 3 en

http://cacaojvm.org/ cacaojvm.org

We will present state of the art JIT compiler design based on CACAO, a GPL licensed multiplatform Java VM. After explaining the basics of code generation,
we will focus on "problematic" instructions, and point to possible ways to exploit stuff.

2007-12-28 17:15

Practical VM exploiting based on CACAO

27. - 30. Dezember 2007, Berlin

180 24C3

Florian

Modelling Infectious Diseases in Virtual Realities

lecture ScienceSaal 3 en

http://www.burckhardt.de/24c3_modelling_infdis_in_vr.pdf conference talk

World of Warcraft is currently one of the most successful and complex virtual realities. Apart from gaming, it simulates personality types, social
structures and a whole range of group dynamics.

2007-12-28 18:30

The "corrupted blood" plague of WoW from an epidemiological perspective

Raoul "Nobody" Chiesa, mayhem

Hacking SCADA

lecture HackingSaal 3 en

http://conference.hitb.org/hitbsecconf2007kl/materials/D1T2%20-%20Raoul%20Chiesa%20and%20Mayhem%20-%20Hacking%20SCADA%20-%20How
%20to%200wn%20Critical%20National%20Infrastructure.pdf Our slides @hitb07

SCADA acronym stand for "Supervisory Control And Data Acquisition";, and it's related to industrial automation inside critical infrastructures. This talk will
introduce the audience to SCADA environments and its totally different security approaches, outlining the main key differences with typical IT Security
best practices. We will analyze a real world case study related to Industry. We will describe the most common security mistakes and some of the direct
consequences of such mistakes to a production environment. In addition, attendees will be shown a video of real SCADA machines reacting to these attacks
in the most "interesting"; of ways! :)

2007-12-28 20:30

how to own critical infrastructures

Peter Fuhrmann

C64-DTV Hacking

lecture HackingSaal 3 en

The C64-DTV is a remake of the classic homecomputer sold as a joystick-contained videogame. The talk gives an overview about the structure of the dtv,
and showes different hardware and software modifications that can be done.

2007-12-28 21:45

Revisiting the legendary computer in a joystick

2) Food and Coins Available On Landing.

Vending Machine for Crows

SocietySaal 3 en

As humanity spreads its population across the globe and in ever-increasing densities we are forcing darwinian selection on all species, selecting for those
which can best adapt to us. Crows are one such example of a synanthropic (human-adapted) species which has been selectively breeding for intelligence,
tool use, and flexible, logical thought. This experiment attempt to autonomously train crows to pick up lost change and deposit it into a machine in
exchange for peanuts.
Aside from the monetary potential ($216million USD/year in the US), this effort highlights the otherwise unexamined relationship between humanity and
the species we impact. Are we simply the propegators of attempted genocide against "pest" species, or are we willing to engage synanthropic species in
mutually beneficial relationships? If we can autonomously train crows to engage in tasks for us (and there is every indication we can - see
www.wireless.is/crows), what will it mean for our ethical responsibilities as stewards of the planet we are busily destroying and the species who are
adapting to us?

2007-12-28 23:00

Saving the World, or Manufacturing Minions?

Tag 3 - Saal 1

What can we do to counter the spies?

lecture SocietySaal 1 en

A presentation about the role of intelligence agencies in the current era of the unending "war on terror";, how they monitor us, the implications for our
democracies, and what we can do to fight back.

2007-12-29 11:30

What it was like to be recruited and work for MI5.

Tomislav Medak, Toni Prug, Marcell Mars

Hacking ideologies, part 2:

lecture SocietySaal 1 en

http://publication.nodel.org/The-Mirrors-Gonna-Steal-Your-Soul The Mirror's Gonna Steal Your Soul
http://rabelais.socialtools.net/FreeSoftware.ToniPrug.Aug2007.pdf Free Software

The Open Source initiative re-interpreted Free Software to include it into the neo-liberal ideology and the capitalist economy - whose aims are contrary
to the FS starting axioms/freedoms. This platform will focus on ideological and political aspects of this. It will also suggest FS recovery strategies.

2007-12-29 12:45

Free Software, Free Drugs and an ethics of death

24. Chaos Communication Congress

Volldampf voraus! 181

Rose White

The history of guerilla knitting

lecture MakingSaal 1 en

"Guerrilla knitting" has a couple of meanings in the knitting community - to some, it merely means knitting in public, while to others, it means creating
public art by knitted means.

2007-12-29 14:00

Frank Rieger, Ron

Die Wahrheit und was wirklich passierte

lecture SocietySaal 1 de

Jede Geschichte hat vier Seiten. Deine Seite, Ihre Seite, die Wahrheit und das, was wirklich passiert ist.

2007-12-29 16:00

Jede Geschichte hat vier Seiten.

Wolfgang Wippermann

Agenten des Bösen

lecture ScienceSaal 1 de

http://www.dradio.de/dkultur/sendungen/kritik/645433/ Buchkritik Agenten des Bösen (dradio)
http://www.media-mania.de/index.php?PHPSESSID=cd7e73d2ef22df76bdded374d65350ca&action=rezi&p=2&id=5770

Buchkritik Agenten des Bösen

Wolfgang Wippermann hat 2007 unter dem Titel "Agenten des Bösen" ein Buch über "Verschwörungstheorien von Luther bis heute" veröffentlicht. Darin
geht es unter anderem auch um Verschwörungstheorie, die in Hackerkreisen auf Interesse stoßen (Illuminanten, 9/11...). Interessant ist seine Einordnung
solcher Verschwörungstheorien in größere Zusammenhänge.

2007-12-29 17:15

Verschwörungstheorien

Steven J, Murdoch

Relay attacks on card payment:

lecture HackingSaal 1 en

http://www.cl.cam.ac.uk/sjm217/papers/usenix07bounding.pdf Academic paper
http://www.cl.cam.ac.uk/research/security/projects/banking/relay/ Summary website

Relay attacks allow criminals to use credit or debit cards for fraudulent transactions, completely bypassing protections in today's electronic payment
systems. This talk will show how using easily available electronics, it is possible to carry out such attacks. Also, we will describe techniques for improving
payment systems, developed by Saar Drimer and me, in order to close this vulnerability.

2007-12-29 18:30

Keeping your enemies close

FX of Phenoelit

Toying with barcodes

lecture CommunitySaal 1 en

The talk focuses on 1D and 2D barcode applications with interference possibilities for the ordinary citizen. Ever wondered what is in these blocks of
squares on postal packages, letters and tickets? Playing with them might have interesting effects, reaching from good old fun to theft and severe impact.

2007-12-29 20:30

The line of least resistance

Florian Bischof

Sex 2.0

SocietySaal 1 de

http://www2.gender.hu-berlin.de/gendermediawiki/index.php/Hauptseite Gender@Wiki

Der lange Schwanz der Dating-Communities sowie die De- und Rekonstruktion von Geschlecht und sexueller Orientierung haben ungeahnte Auswirkungen
auf unser Sexualleben. Ein Überblick darüber, was Sex ist, wie Dating-Communities funktionieren und wie man zu einem erfüllten Sexualleben kommen
kann.

2007-12-29 21:45

Hacking Heteronormativity

Ray

Hacker Jeopardy

contest CommunitySaal 1 de

Das bekannte Quizformat - aber natürlich mit Themen, die man im Fernsehen nie zu sehen bekäme.

2007-12-29 23:00

Die ultimative Hacker-Quizshow

Tag 3 - Saal 2

27. - 30. Dezember 2007, Berlin

182 24C3

Jens Muecke, Sven Übelacker

Hamburger Wahlstift

lecture HackingSaal 2 de

http://www.24-februar.de/ Werbeseite zur Wahl
Am 24. Februar wollte Hamburg als Pilotprojekt mit dem Digitalen Wahlstift wählen.

2007-12-29 11:30

jz

Distributed campaigns for promoting and defending freedom in digital societies

lecture SocietySaal 2 en

http://www.april.org/ APRIL, french non-profit organization for promoting and defending libre software
http://www.eucd.info/ Campaign for raising awareness about DRM, the criminalization of their circumvention,

and their effects on economics, law, innovation
http://www.candidats.fr/ Campaigns to make the candidates to elections work on freedom in the digital world
http://www.stopDRM.info/ campaigns to educate consumers about music and video locked-down with DRM

A presentation of a few successful campaigns in France lead by libre software activists for defending freedom in a digital world: bringing awareness of the
politicians about the dangers of the EUCD transposition and DRM, and their economical, social and political impact and influencing the candidates at a
presidential election to talk about Libre Software, software patents, DRM, etc. How did we do that? What have we learned? Maybe for political action
too, sharing is a way of just doing it better.

2007-12-29 12:45

Sharing experience about campaigning on the political field in France

Markus Schneider

Wahlchaos

lecture SocietySaal 2 de

http://univis.uni-magdeburg.de/form?__s=2&dsc=anew/lecture_view&lvs=fgse/ipw/zentr/psy_0&anonymous=1&founds=fgse/ipw/
zentr/psy_0,fma/iag/zentr/comput,/linear,/mab,/oberse&nosearch=1&ref=main&sem=2006s&__e=

Seite des Seminars aus dem Universitätsinformationssystem

Wahlchaos beschäftigt sich mit Wahlverfahren aus mathematischer und politischer Sicht. So wurden die Wahlen von 1998, 2002 und 2005 betrachtet und
a-postpriori manipuliert und ihre Auswirkungen diskutiert.

2007-12-29 14:00

Paradoxien des deutschen Wahlsystems

Tomasz Rybak

Analysis of Sputnik Data from 23C3

lecture ScienceSaal 2 en

http://www.openbeacon.org/ Main page of Sputnik Project
http://www.bogomips.w.tkb.pl/sputnik.html My page with some analysis
http://pmeerw.net/23C3_ Page with analysis made by Peter Meerwald
http://wiki.openbeacon.org/wiki/Datamining Open Beacon Wiki about analysing data

In December 2006, in BCC 1000 atendees were wearing Sputnik Tags. Data was stored, and then made available for analysis. Unfortunately all IDs of tags
were lost. This lecture presents what was stored, what happened to it, and attempts of reconstructing IDs and sequences of movements.

2007-12-29 16:00

Attempts to regenerate lost sequences

Roger Dingledine

Current events in Tor development

lecture HackingSaal 2 en

https://tor.eff.org/ Tor
Come talk with Roger Dingledine, Tor project leader, about some of the challenges in the anonymity world.

2007-12-29 17:15

Emerson

Hacking in the age of declining everything

lecture SocietySaal 2 en

It is thought by many that the world may be facing Peaks in fossil fuel production and catastrophic climate change. These huge problems put into
question the Industrial Civilisation and call for, at the very least, massive changes to society if humanity is to survive. Do hackers have a role to play in a
post transition society? What sort of things should hackers know and prepare for in such a future?

2007-12-29 18:30

What can we do when everything we thought turns out to be wrong

starbug, Constanze Kurz

Meine Finger gehören mir

lecture SocietySaal 2 de

Zum 1. November 2007 ging der biometrische Reisepass in die nächste Ausbaustufe. Seitdem müssen reisewillige Bürger neben dem frontalen Gesichtsbild
auch noch ihre Fingerabdrücke abgeben.

2007-12-29 20:30

Die nächste Stufe der biometrischen Vollerfassung

24. Chaos Communication Congress

Volldampf voraus! 183

Johannes Grenzfurthner

All Tomorrow's Condensation

CultureSaal 2 en

A long time ago in a post-apocalyptic region far, far away. Sympathetic outlaws battle against hyper-villains. Some people die, some people get famous.
Societal business as usual. But wait! Something is _happening_!monochrom (featuring Bre Pettis, Sean Bonner and others) try to reinterpret the
steampunk genre in form of a steamy puppet extravaganza. A journey into the backwaters of imagination!

2007-12-29 21:45

A puppet extravaganza by monochrom and friends

Oona Leganovic, Daniel Kulla

Space Communism

other CultureSaal 2 en

http://events.ccc.de/camp/2007/Fahrplan/events/1856.en.html "Weltraumkommunismus" auf dem Camp '07
http://dewy.fem.tu-ilmenau.de/CCC/CCCamp07/video/m4v/cccamp07-de-1856-Weltraumkommunismus.m4v

Videomitschnitt vom Camp (m4v, 144 MB)

Following "Chaos und Kritische Theorie" from 23C3, another verbal battle: Oona Leganovic (aka Ijon Tichy) will promote the idea to sublate the capital
relation and bring about communism first and only then to go to Space, because otherwise the earthly problems will be spread everywhere. Daniel Kulla
(impersonating Captain Kathryn Janeway) will, on the other hand, defend the exploration humanism that once already ended the middle ages and of
which can be expected to do the same to the crusted planetary commodity circus.

2007-12-29 23:00

Communism or Space first?

Tag 3 - Saal 3

Tonnerre Lombard

Grundlagen der sicheren Programmierung

lecture HackingSaal 3 de

Dieser Vortrag bietet eine Übersicht über einige Dinge, welche man im Kopf behalten sollte, wenn man Software schreibt - vorausgesetzt, diese soll
nachher nur von der Person benutzt werden, die sie auch betreibt. Die theoretischen Aspekte der Sicherheit werden mit Codebeispielen untermalt.

2007-12-29 11:30

Typische Sicherheitslücken

Jens Kaufmann

Introduction in MEMS

lecture ScienceSaal 3 en

MicroElectroMechanical Systems or MEMS are as part of micro system technology, systems with electrical and mechanical subsystems at the micro scale. It
is basically an introduction in the technology and in its potential for hardware hacks and potential ways of homebrew devices.

2007-12-29 12:45

Skills for very small ninjas

Henning Westerholt

OpenSER SIP Server

lecture HackingSaal 3 de

http://openser.org/dokuwiki/ OpenSER Dokumentation

Der Vortrag stellt OpenSER und das Open Source Projekt dahinter vor. OpenSER ist ein flexiber und leistungsfähiger SIP Server, mit dem alle Arten von
Voice over IP Infrastrukturen realisiert werden können. Er ist sowohl im DSL Router als Telefonanlage für die Wohngemeinschaft als auch von Carriern mit
mehreren Millionen Kunden einsetzbar. Anhand dieser Beispiele werden einige gebräuchliche Einsatzszenarien aufgezeigt. Dafür ist es notwendig, kurz auf
die Konfiguration, die Anbindung an Datenbanken und die wichtigsten Module einzugehen. Abschließend wird anhand des aktuellen Release 1.3 und der
Roadmap die weitere Entwicklung des Projektes vorgestellt.

2007-12-29 14:00

VoIP-Systeme mit OpenSER

Stephan Schmieder

Getting Things Done

lecture CultureSaal 3 de

http://unixgu.ru/papers/gtd.html Keylearnings mindmap
http://www.amazon.de/dp/0142000280 The Manual bei Amazon
http://unixgu.ru/lib/exe/fetch.php?id=papers&cache=cache&media=gtd-mrmcd-slides.pdf Slides from the same talk at mrmcd110b
http://freemind.sf.net/ http://www.lifehack.org/
http://www.zenhabits.net/ http://www.lifeoptimizer.org/ http://www.thinkingrock.com.au/

Eine Einführung ins Antiverpeilen mit Tools und Techniken rund um David Allens "Getting Things Done"-Methodik.

2007-12-29 16:00

Der Antiverpeil-Talk

27. - 30. Dezember 2007, Berlin

184 24C3

twiz, sgrakkyu

From Ring Zero to UID Zero

lecture HackingSaal 3 en

http://www.phrack.org/issues.html?issue=64&id=6#article Phrack #64: Attacking the Core : Kernel Exploiting Notes

The process of exploiting kernel based vulnerabilities is one of the topic which have received more attention (and kindled more interest) among security
researchers, coders and addicted.

2007-12-29 17:15

A couple of stories about kernel exploiting

Nicolas Cannasse

haXe

lecture HackingSaal 3 en

http://haxe.org haXe website
http://nekovm.org neko website
http://haxe.org/hxasm hxASM website
http://haxevideo.org haxeVideo website

haXe is a programming language for developing both server AND client side of a website. haXe can do Javascript/AJAX, Database access and even Flash and
video streaming. All with one single programming language.

2007-12-29 18:30

hacking a programming language

dash

Reverse Engineering of Embedded Devices

lecture HackingSaal 3 en

The event aims on reverse engineering small boxes you can buy at your local Saturn or Media Market like SOHO Routers.

2007-12-29 20:30

Frederik Ramm

OpenStreetMap, the free Wiki world map

lecture MakingSaal 3 en

The OpenStreetMap project has achieved remarkable successes in creating a free world map, and is growing fast. This talk gives an overview of what we
do, why we do it, and what our data can be used for.

2007-12-29 21:45

3 years done - 10 to go?

Tag 4 - Saal 1

Peter Eckersley

A Spotter's Guide to AACS Keys

lecture HackingSaal 1 en

AACS is the DRM system used on HD-DVD and Blu-Ray discs. It is one of the most sophisticated DRM deployments to date. It includes around twelve different
kinds of keys (in fact, even counting the different kinds of keys is non-trivial), three optional watermarking schemes, and four revocation mechanisms
(for keys, hardware, players, and certain disc images).

2007-12-30 11:30

Wearables of the electronic and digital ages and the female cyborg

lecture SocietySaal 1 en

Historians of technology usually argue that in the mediation of technology, female icons served two purposes: firstly, attracting the male buyer as erotic
signals; secondly, representing the simplicity of a technology`s handling. This scheme is obviously too simple and in itself stereotyped. It neglects the
nuances of how women are envisioned in relation to what technologies and what this means for both the semiotics of a technology and the identities of
women. For the case of the portable electronics, I will demonstrate such nuances. E.g. the radio was connected to female users as long as it served
leisurable entertainment in public spaces.
However, when marketed as an information tool back home or on business tours, it was put in male hands. Furthermore, the popular ascriptions which
condensed in the visions of media, advertising and manuals, also materialized in the artifacts themselves. Thus, radios or cell phones which were targeted
explicitly at women had feminized designs, colours and features which should relate to their life experiences. In my talk, I will also include this dimension
of the artifacts, analyzing them as frozen envisions of social and cultural values.

2007-12-30 14:00

24. Chaos Communication Congress

Volldampf voraus! 185

Luke Jennings

One Token to Rule Them All

HackingSaal 1 en

The defense techniques employed by large software manufacturers are getting better. This is particularly true of Microsoft who have improved the
security of the software they make tremendously since their Trustworthy Computing initiative. Gone are the days of being able to penetrate any
Microsoft system by firing off the RPC-DCOM exploit. The consequence of this is that post-exploitation has become increasingly important in order to
"squeeze all the juice" out of every compromised system.Windows access tokens are integral to Microsoft's concept of single sign-on in an active directory
environment. Compromising a system that has privileged tokens can allow for both local and domain privilege escalation.

2007-12-30 16:00

Post-Exploitation Fun in Windows Environments

TyRaNiD

Playstation Portable Cracking

lecture HackingSaal 1 en

The Sony PSP is over 3 years old yet barely a day has gone by without some part of it getting attacked. This lecture will go through how hacker ingenuity
and systematic failures in Sony's hardware, software and business practices ended up completely destroying the hand held's security including some
previously unreleased information about how it was achieved.

2007-12-30 17:15

How In The End We Got It All!

Alexander Kornbrust

Latest trends in Oracle Security

lecture HackingSaal 1 en

http://www.red-database-security.com/ Homepage Red-Database-Security GmbH

Oracle databases are the leading databases in companies and organizations. In the last 3 years Oracle invested a lot of time and engery to make the
databases more secure, adding new features ... but even 2007 most databases are easy to hack.

2007-12-30 18:30

Ron, Frank Rieger

Security Nightmares 2008

lecture HackingSaal 1 de

Security Nightmares - der jährliche Rückblick auf die IT-Sicherheit und der Security-Glaskugelblick für's nächste Jahr.

2007-12-30 20:30

Oder: worüber wir nächstes Jahr lachen werden

Tim Pritlove

Closing Event

lecture CommunitySaal 1 en2007-12-30 21:45

Tag 4 - Saal 2

Peter Voigt

GPLv3 - Praktische Auswirkungen

lecture SocietySaal 2 de

Was der Umstieg auf die GPLv3 an Neuerungen mit sich bringt, welche Fehler beim Wechsel vermieden werden können und an welchen Stellen rechtliche
Fragestellungen lauern, für deren Klärung technische Überlegungen nicht ausreichen, schildert dieser Vortrag.

2007-12-30 11:30

Marc-Andr Beck, Bernd R. Fix

Smartcard protocol sniffing

lecture HackingSaal 2 en

http://postcard-sicherheit.ch/ postcard-sicherheit.ch

This talk will introduce you to the theoretical and practical issues involved in cloning/simulating existing smartcards. It is based on the lessons learned
from cloning the Postcard (swiss debit card) issued by PostFinance.

2007-12-30 12:45

Jonathan Weiss

Ruby on Rails Security

lecture HackingSaal 2 en

This talk will focus on the security of the Ruby on Rails Web Framework. Some dos and don'ts will be presented along with security Best Practices for
common attacks like session fixation, XSS, SQL injection, and deployment weaknesses.

2007-12-30 14:00

Machtelt

Lobbying for Open Source

lecture SocietySaal 2 en

This talk is about our experiences with talking to the government. The focus is on how to get the job done, talking politics to people who are clueless
about the need for free and open software.

2007-12-30 16:00

From one angry mail to writing national policy on Open Source

27. - 30. Dezember 2007, Berlin

186 24C3

kuza55

Unusual Web Bugs

lecture HackingSaal 2 en

While many issues in web apps have been documented, and are fairly well known, I would like to shine some light on mostly unknown issues, and present
some new techniques for exploiting previously unexploitable bugs.

2007-12-30 17:15

A Web Hacker's Bag O' Tricks

I know who you clicked last summer

lecture HackingSaal 2 en

One-mode and two-mode networks: This talk introduces some techniques of social network analysis and graph theory. It aims at using simple approaches
for getting interesting facts about networks. I will use the data of a popular community to demonstrate some of the techniques.
* modelling possibilities* basic measures of networks and some algorithms of network and graph theory

2007-12-30 18:30

A swiss army knife for automatic social investigation

Felix von Leitner

Abschlussbericht FeM-Streaming und Encoding

lecture MakingSaal 2 de

Das Streaming-Team der FeM e.V. möchte zum Abschluss des 24C3 einen Überblick über die Streaming-Aktivitäten geben, ein paar Statistiken jonglieren
und sonstige (Un-)Auffälligkeiten und Stories berichten.

2007-12-30 20:30

Tag 4 - Saal 3

Benjamin Henrion

OOXML

lecture SocietySaal 3 en

http://www.noooxml.org/ Say NO to Microsoft Office broken standard
Microsoft is currently trying to buy an ISO stamp for their flawed Office OpenXML (OOXML) specification.

2007-12-30 11:30

A twelve euros campaign against Microsoft's Office broken standard

Olivier Cleynen

Overtaking Proprietary Software Without Writing Code

lecture SocietySaal 3 en

Free or "Open-Source" software, and in particular Linux, is doing extremely well technically. However, it fails to secure a significant portion of the
protected, lucrative software market, especially for end-users. Can Free Software finally make a full entry into our society? The main obstacles to
overcoming the domination of proprietary software, most of them non-technical, require thinking outside of code-writing. "Overtaking Proprietary
Software Without Writing Code" will relate experience gained from the activities of the GNU/Linux Matters non-profit, and provide some hands-on advice
for community members, taking a handful of relevant examples.

2007-12-30 12:45

"A few rough insights on sharpening free software"

Immanuel Scholz

Dining Cryptographers, The Protocol

lecture ScienceSaal 3 en

http://www.eigenheimstrasse.de/imi/dc DC Network Client (Java WebStart)
http://www.eigenheimstrasse.de/svn/dc/ Source Code to the DC Network Client
http://www.eigenheimstrasse.de/svn/dc/doc/dcnetwork.pdf Slides

Imi gives an introduction into the idea behind DC networks, how and why they work. With demonstration!

2007-12-30 14:00

Even slower than Tor and JAP together!

Cyworg

Lieber Cyborg als Göttin

lecture SocietySaal 3 de

Das Cyborgmanifest verbindet die Analyse der heutigen Gesellschaft als "Informatik der Herrschaft" mit dem Aufruf von politischem, kreativem Umgang
mit Technik, der Möglichkeit des Angreifens von Machtstrukturen und mit der Überwindung der starren Grenzen zwischen den Geschlechtern.

2007-12-30 16:00

Politischer Hacktivismus und Cyborgfeminismus

24. Chaos Communication Congress

Volldampf voraus! 187

24. Chaos Communication Congress
27. - 30. Dezember 2007, Berlin

Tagungsband

6360647839349

ISBN 978-3-934-63606-4

90000 > books-on-demand.de

